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Higher organisms possess many genes which cycle under normal conditions, to allow the or-
ganism to adapt to expected environmental conditions throughout the course of a day. How-

ever, treatment-induced disruption of regular cyclic gene expression patterns presents a

signi¯cant challenge in novel gene discovery experiments because these disruptions can induce
strong di®erential regulation events for genes that are not involved in an adaptive response to

the treatment. To address this cycle disruption problem, we reviewed the state-of-art periodic

pattern detection algorithms and a pattern decomposition algorithm (PRIISM), which is a

knowledge-based Fourier analysis algorithm designed to distinguish the cyclic patterns from the
rest gene expression patterns, and discussed potential future improvements.
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1. Disruption of Cyclic Gene Expression Patterns

Cyclic gene expression patterns have been observed in almost every organism

ranging from prokaryotes to eukaryotes,1 and have been found to provide a com-

petitive advantage in ¯tness and survival.2�4 Whole-genome di®erential expression

analyses have enabled scientists to investigate how maintaining or disrupting a

rhythmic mechanism creates an adaptive advantage for an organism. One of the

¯ndings from such studies is that treatment-induced disruption of the core set of

cyclic genes (which control many downstream pathways) occurs in almost all kinds of

organisms, including mamals, plants and prokayotes (Fig. 1).3�8

One very important problem which is not typically considered in gene expression

studies which utilize a biotic or abiotic treatment (or analyze organisms under dif-

ferent environmental conditions) is that strong positive and negative fold-change

values can result from small disruptions in cyclic gene expression patterns, where a

fold-change value is calculated as the treatment expression level divided by the

control expression level at the same timepoint. In an illustrative example in

Figs. 2(a)�2(f), a 2-hours phase-shift in cyclic expression results in strong positive

and negative di®erential regulation cycles; a 33% increase in the minimum amplitude

(relative to the maximum amplitude) results in signi¯cant peaks at several time-

points; and a 10% reduction in cycle frequency leads to varying di®erential regulation

at various timepoints. Figures 2(g)�2(j) show real examples of the gene expression

patterns and fold change curves resulting from the disruptions of two core circadian

clock genes due to cold treatment in Arabidopsis.9

When a stress treatment is applied, stress-response genes are expected to be

di®erentially regulated, while in°uences from the disrupted circadian clock will cause

signi¯cant fold changes in gene expression because genes can be (I) di®erentially

regulated due to direct stress responses, (II) indirectly di®erentially regulated

through disruption of clock pathways induced by the stress or (III) di®erentially

regulated through a combination of both (as shown in Fig. 3). Additional compli-

cations in regulation patterns arise from the complexity of transcription factor

pathways, in which targets may be regulated by clock components directly or

through interactions with their transcription factors. These disruptions in core clock

components complicate the identi¯cation of \true" treatment-response genes (i.e.

genes which physiologically participate in the biological acclimation to treatment).

Correcting for di®erential genes expression patterns induced by the circadian clock

disruption is required for the discovery of \true" treatment-response gene.

Up to 10% of mammalian genes11 are thought to be under the regulatory control

of molecular circadian rhythm pathways. The large number of physiological and

pathological consequences of disrupting these circadian pathways through sleep

deprivation or unnatural light regimes have been studied in detail on whole organ-

isms,12 and large changes in the oscillation patterns of all the tested core clock genes

have been observed for mice under di®erent feeding regimes.11 Mammalian gene

expression studies are more typically performed on cell cultures, which have been
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shown to have molecular circadian rhythm patterns similar to whole organisms.13

Recently, a protein kinase called c-Jun NH2-terminal Kinase (JNK) was shown to be

critical for proper circadian rhythm function and cell proliferation [through Map

Kinase Kinase 7 (MKK7) activation] and is activated by a wide range of external

stresses, including osmolarity changes, heat shock and UV irradiation.5 This suggests

a mechanism through which treatment-induced circadian-pathway disruptions may

Fig. 1. Detailed structures of the clock mechanisms for Mus musculus, Arabidopsis thaliana and Sac-
charomyces cerevisiae have been generated through genetic studies. While the components are not

orthologous, the schematic model diagrams of circadian-clock and cell-cycle oscillators of the three model

organism are similar to each other, and the network architecture of positive and negative feedback loops is

conserved.4
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Fig. 2. Strong fold change values can result from small changes in cyclic expression patterns. (a) A

2 hours phase-shift (8.3% of the total cycle time) in cyclic expression results in (b) strong positive and

negative di®erential regulation cycles. (c) Increasing the minimum amplitude by 33% (relative to the

maximum amplitude) results in (d) signi¯cant peaks at several timepoints. (e) A 10% reduction in cycle
frequency leads to (f) strong positive and negative di®erential regulation at various timepoints. (g) A

phase-shift and small increase in the minimum amplitude of RVE1 due to cold treatment results in

(h) signi¯cant upregulation fold change values at several timepoints. (i) An increase in the minimum

amplitude of CCA1 results in (j) signi¯cant upregulation fold change values at several timepoints.9
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occur, causing di®erential expression measurements for a large number of genes in

treatment-response studies in mammalian cell cultures.

Plants also possess molecular circadian clock pathways which in°uence gene ex-

pression to modify physiology and metabolism in preparation for predictable changes

in light and temperature conditions in the environment.14 Plants with circadian

clocks that are properly synchronized to their environments have been found to ¯x

more carbon, grow larger and survive better than plants with clocks that are out of

phase with their environments.2 Several studies have shown that between 6% and

31% of the Arabidopsis genome is in°uenced by circadian clock genetic compo-

nents,6,15,16 while another study suggests that there are signi¯cant baseline circadian

oscillations for nearly 100% of the genome.17 Many di®erent biotic and abiotic stress

treatments in Arabidopsis studies have been shown to disrupt rhythmic circadian-

clock expression patterns through amplitude changes or phase and amplitude

shifts.6,9,18�21

In addition to circadian rhythm pathways, the cyclic expression of cell-cycle genes

in synchronized cultures may be disrupted by treatment responses. In one study, 13%

of genes in cell-cycle synchronized yeast cultures were found to have signi¯cant cyclic

patterns,22 while another study found that at least 27% of yeast genes are linearly

correlated with growth rates.23 Two separate studies have found that many genes

previously characterized as being stress responsive7 are likely actually di®erentially

regulated in response to a reduction in growth rate secondary to stress,23,24

Fig. 3. Biotic and abiotic stresses both directly and indirectly in°uence target gene expression patterns.

Genes found to be di®erentially expressed may be in°uenced by (I) only direct treatment in°uences, (II)

only indirect circadian-clock disruption in°uences, or (III) both direct treatment response and indirect
clock in°uences.10
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suggesting a similar complication in cell-cycle regulated genes as described above for

circadian genes.

2. Biological Solutions to Address the Cycle Disruption Problem

In principle, there are two approaches to address the cycle disruption problem in

high-throughput gene expression experiments. First, the experimental design may be

changed in order to attempt to reduce the in°uences of cyclically expressed genes on

global gene expression. To remove the in°uences of circadian-pathway genes, con-

stant light treatments are sometimes used in an attempt to avoid the in°uences of

cyclic expression patterns, but circadian rhythms continue under constant light,

treatment responses often depend of the phase of the clock at which they are applied,

and the unnatural conditions reduce the applicability of the results.9,25 Another

approach to reducing clock-related in°uences is to use clock-gene knockout strains,

but this also complicates the results due to the unnatural conditions and speci¯c

e®ects resulting from changes in the expression of clock components.9,26

Even though these experimental-design approaches may remove the cyclic pat-

terns from circadian genes, the unnatural conditions required to accomplish this will

always reduce the applicability of the results. For this reason, time-series experi-

ments are typically run on synchronized samples by entraining circadian rhythms

using light and/or temperature cycle5,9 and leave the problem of cycle disruption

identi¯cation and removal to post-experimental data analysis.

3. Computational Solutions to Address the Cycle Disruption Problem

The general computational approach for addressing the cycle disruption problem is

to run the experiment under natural conditions and then process the datasets in

order to distinguish cyclic patterns from other gene expression patterns in the

datasets. In general, the process has two stages: periodic gene expression pattern

detection (see Sec. 3.1) and pattern decompostion (see Sec. 3.2). Both of these stages

use time-series gene expression data as an input.

From gene expression data, cyclic patterns can be characterized by periodic

pattern detection methods. Then, cyclic patterns can be decomposed from

original expression data resulting in the removal of disruption in°uences. The

framework of pattern decomposition is shown in Fig. 4, where one gene expression

pro¯le is decomposed into three distinct gene expression patterns: (1) the treatment-

frequency gene expression pattern, which has much of the complicating circadian

in°uences removed, and consequently can be used to more accurately identify dif-

ferentially regulated genes which are involved in direct treatment response; (2)

the clock-frequency gene expression pattern, representing rhythmic patterns with

a period of approximately one cycle per day; and (3) the noise-frequency gene

expression pattern.
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Note that, in addition to cyclic pattern identi¯cation and decomposition, the

distortion of circadian patterns has be studied with statistical hypothesis testing

methods such as analysis of variance (ANOVA),27,28 in that it is capable of esti-

mating the overall probability of di®erence in expression. However, ANOVA cannot

measure the circadian distortion at a given timepoint and cannot study how the

distortion changes over time. Therefore, we will not discuss the use of ANOVA in the

rest of this paper.

3.1. Detecting periodic gene expression patterns

The ¯rst stage in addressing cycle disruption is to characterize cyclic patterns in

time-series gene expression datasets. The existing approaches for detecting periodic

expression patterns are generally categorized into two groups: model-based pattern

identi¯cation in time domain and spectral analyses in frequency domain.29

Many time-series approaches detect periodic gene expression patterns by

matching expression pro¯les to periodic models.16,29�32 One such approach,

Fig. 4. An abstract framework to decompose gene expression data into three independent gene expression

patterns. (a) The original gene expression data under control and treatment conditions (used to calculate

the fold-change pattern). (b) Treatment-frequency, clock-frequency and noise-frequency gene expression

patterns.10
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CORRCOS16 presented in 2000, computed cross-correlations between gene expres-

sion data and synthetic cosine functions. A CORRCOS-based study of more than

8000 Arabidopsis genes suggested that around 6% of them are controlled by the

clock, many of which have been previously reported to be under circadian control.16

As an extension of CORRCOS, COSOPT30 (which provides a reliable estimation of

period, phase and oscillatory amplitude33) was ¯rst applied to mammalian systems,30

and then extended to the analyses of circadian patterns in microarray data from

other genomes, including Drosophila34 and Arabidopsis.15 In both algorithms, sine

and cosine curves are used as the ideal model for periodic gene expressions.35 How-

ever, as reported in Lin et al.,36 a signi¯cant number of expression pro¯les are

actually not sinusoidal. To address this issue, Luan and Li31 developed a shape-

invariant model in 2004 with a cubic B-spline based periodic function for charac-

terizing cyclic patterns in gene expression data. The proposed model successfully

identi¯ed 86% of the known periodically expressed genes in a yeast cell cycle data-

set37 at a false discovery rate of 0:5%. Based on these previous works, HAYSTACK32

(which includes multiple cyclic patterns including asymmetric, rigid, spike, cosine

and/or box-like patterns) was developed by Mockler et al. in 2007. By computing the

Pearson correlation coe±cients between gene expression pro¯les and user-de¯ned

models with a wide range of types of cyclic patterns, HAYSTACK identi¯es peri-

odically expressed genes and their corresponding best-¯tting model with the phase

and the period information.32 The above methods are relatively simple and com-

putationally e±cient but are limited because the models must be pre-de¯ned and

may not match any true biological patterns. To overcome this limitation, in 2009,

Chudova et al. applied a Bayesian procedure to detect nonsinusoidal periodic pat-

terns in circadian expression data by estimating the contribution of a periodic

component in observed pro¯les.29

The second category of approaches for detecting periodic expression patterns is

spectral analyses in frequency domain. In frequency-domain analyses, the process of

periodic pattern detection has been simpli¯ed to the identi¯cation of the signi¯cant

peaks in the amplitude spectrum. To obtain the spectrum of the expression pro¯le,

frequency-domain approaches perform transformations on the time-series expression

pro¯le of each probe. A Fourier transform�based study, which decomposes periodic

signals into the sum of a set of simple oscillating functions (complex exponentials),

was ¯rst presented by Spellman et al.37 to analyze time-series gene expression data,

resulting in the identi¯cation of 800 cell-cycle genes in synchronized S. Cerevisiae

cultures. It was later extended to successfully detect cyclic genes in human cell

cultures,38 Plasmodium falciparum39 and ¯ssion yeast.40 However, there are several

limitations to the application of the Fourier transform. First, it requires evenly

spaced data, which are not usually available for high-throughput gene expression

experiments. A more critical limitation of the application of the Fourier transform is

the issue of the frequency resolution (determined by the sampling interval in a gene

expression experiment). Existing time-series datasets are usually short, and conse-

quently their frequency resolutions are not high enough to distinguish periodic
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pattens of interest.41,42 In short, Fourier transform�based frequency domain meth-

ods are model independent, but they are limited because they require evenly and

densely sampled time-series datasets that are not commonly available cases for high-

throughput gene expression pro¯les. To address the ¯rst limitation, the

Lomb�Scargle periodogram43 and Laplace periodogram44 were proposed to treat

unevenly spaced timepoints. Realizing the second limitations of the Fourier trans-

form, Wichert et al.45 developed a new graphical device called the \average peri-

odogram," a nonparametric method of obtaining frequency estimators, which is

suitable to detect periodic pattern in very short time-series expression data.

The aforementioned approaches are able to characterize cyclic patterns in gene

expression data but they are not designed to distinguish cycle disruption from

treatment-induced gene expression patterns. Decomposing these in°uences to in-

vestigate only treatment-induced changes is a much more complex problem than

identifying cyclic genes, and as discussed in Sec. 1, is very important for under-

standing biological responses to treatment.4

3.2. Distinguishing cyclic patterns from other gene expression patterns

For distinguishing cycle disruption patterns from treatment-induced gene expression

patterns, we have previously presented a frequency-based algorithm called PRI-

ISM.10 PRIISM has three steps. In step one, it takes advantage of the Fourier

transform to characterize the periodic patterns in expression pro¯les. In step two, a

clock vector is derived based on the Fourier spectra of core circadian genes. In step

three, the input expression pro¯le is decomposed into three components by using a

set of ¯lters which are de¯ned according to the clock vector. The work°ow of PRIISM

is outlined in Fig. 5.

PRIISM was evaluated on a relatively high-resolution time-series dataset9 of

Arabidopsis under cold treatment. Results of this study showed that the treatment-

related fold change data produced by PRIISM constantly outperforms the original

data, and the 26 hours timepoint in our dataset was the best statistic for identifying

the most known cold-response genes. In addition, six novel cold-response genes were

discovered. PRIISM also provides a gene expression pattern which represents only

circadian clock in°uences, and may be useful for circadian clock analysis studies.

3.2.1. PRIISM Step 1: Fourier transform

The treatment-induced disruption of clock patterns may change over time as the

organism adapts to or recovers from the treatment applied. So rather than simply

applying Fourier transform on the whole time course data, a coarse sliding-window

approach is utilized in PRIISM to capture the time variant frequencies, i.e. the whole

time course is divided into overlapped timeframes such that each timeframe covers

roughly a one day and one night cycle.

As discussed in the previous section, the Fourier transform requires evenly sam-

pled input. To meet this need, the input data in each timeframe are interpolated to
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evenly spaced intervals with spline interpolation. This interpolation step also

decreases the sampling interval of the data, which enhances the frequency resolution

of the Fourier analysis.

The Fourier transform is then performed on all the genes. To avoid the periodicity

identi¯cation being biased toward zero frequency (due to some constant minimum

expression level for most genes), the mean of the time course expression values for

each gene is shifted to zero before the Fourier transform. The mean values are later

added back proportionally to the reconstructed gene expression values in the

reconstruction step.

3.2.2. PRIISM Step 2: Clock vector identi¯cation

In PRIISM, core cyclic genes are taken as guide genes that specify periodic patterns

of expressions under control and treatment. For the PRIISM test experiment on

Fig. 5. Work°ow of the PRIISM algorithm. PRIISM has three steps. In the ¯rst step, gene expression
data are pre-processed to ¯t the requirements of the Fourier transform, after which the Fourier transform

is performed to produce an amplitude spectrum for every gene (a, b). In the second step, a clock vector that

de¯nes the frequency range and the frequency response of the ¯lters which are used to decompose spec-

trum. In the third step, every gene's spectrum is decomposed into three components: treatment, clock and
noise, after which the inverse Fourier transform is applied to project each spectrum component back to the

expression domain, resulting in three independent expression patterns (e, f).10
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Arabidopsis, eight genes (CCA1, LHY, PRR7, PRR9, ELF4, GI, LUX and TOC1)

were chosen as core circadian clock genes because they and their downstream gene

targets are known to regulate a wide range of downstream pathways, including

germination, leaf development, organelle morphology, photosynthesis and cell wall

development in plants.46 For other organisms, similar core clock genes should be

selected.

The frequency components of the core clock genes with relative amplitudes

greater than 0.7 (corresponding to half of the maximum value in the spectra) are

chosen as dominant frequencies. The union of the sets of dominant frequencies are

de¯ned as Circadian Clock Frequency Range (CCFR), which gives the frequency

range of the circadian patterns under a given condition and bandwidth of the ¯lters

that are used in decomposition step. The weight of each frequency component in the

CCFR is derived according to the magnitude of the Fourier coe±cient of the cor-

responding frequency component. The vector of the weights (and their corresponding

frequencies) forms the \clock vector," which de¯nes the frequency response of a

tapering bandpass ¯lter within the CCFR.10

3.2.3. PRIISM Step 3: Decomposition and reconstruction

The goal of this step is to decompose the whole spectrum into three distinct sections:

treatment-frequency, clock-frequency and noise-frequency components and then re-

construct each of them. For decomposing treatment-frequency component, given a

relatively narrow frequency band, a low-pass ¯lter with a steep cut-o® frequency is

used to gain the optimal balance between removing ringing artifacts and approxi-

mating the desired frequency responses (see details in Sec. 3.2.4). A tapering bandpass

¯lter is applied to reconstruct the clock-frequency expression pattern that has reduced

noise. The reconstructed high-frequency expression pattern is considered to be noise.

For pattern reconstruction, the inverse Fourier transform is performed individ-

ually on the treatment-frequency and clock-frequency sections for each gene. Similar

to using the clock vector as a tapering band-pass ¯lter to remove noise, PRIISM adds

a coarse-graining process to increase the robustness of component selection by

making sure there is no overlap between any two frequency bands. The mean of the

original gene expression values (which was removed in Step 1), is added back pro-

portionally to each gene expression curve based on the amplitude distribution of each

component in the spectrum of original expression. For more details of the decom-

position and reconstruction step, please refer to Rosa et al.10

3.2.4. Design of the low-pass ¯lter

The performance of PRIISM is largely determined by the design of the low-pass ¯lter

used in the decomposition step. When designing a low-pass ¯lter, the balance be-

tween approximating an desired frequency response and reducing ringing artifacts

should be considered. Traditionally, to minimize ringing artifacts, tapering low-pass

¯lters (such as a Butterworth ¯lter) are commonly used in signal processing. Note
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that the smoothing e®ect of a tapering ¯lter is dependent on the width of its tran-

sition band, i.e. the wider the bandwidth is, the more ringing artifacts are removed

(but the farther the designed frequency response is from the desired one). Due to the

speci¯city of the time-series gene expression data, however, an ideal low-pass ¯lter

with a strict cuto® frequency is adopted instead of a Butterworth ¯lter for treating

treatment-frequency components in PRIISM.

Below, we use AtGolS3 (AT1G09350) as an example and processed its expression

data with two di®erent ¯lters (Fig. 6) to explain the choice of the ideal low-pass ¯lter.
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Fig. 6. The mean-shifted and interpolated gene expression values of AtGolS3 is shown in (a), and the

reconstructed gene expression values by the ideal low-pass ¯lter (dotted black line) and a ¯fth-order

Butterworth ¯lter (dash grey line) are shown in (b). Figure (c) shows the comparison of the frequency

spectra of AtGolS3 by using the ideal low-pass ¯lter (dotted black line) or the ¯fth-order Butterworth low-
pass ¯lter (dash grey line). The original treatment-frequency spectrum of AtGolS3 is also shown in solid

black line.
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The mean-shifted interpolated gene expression values of AtGolS3 are shown in

Fig. 6(a), and the resulting expression patterns with an ideal low-pass ¯lter or a ¯fth-

order Butterworth ¯lter are shown respectively in Fig. 6(b). To compare the per-

formance of the two reconstructed series, we computed their spectra by performing

FFT again. The spectrum of the original data (mean-shifted interpolated) and the

spectra of the reconstructed series by the ideal low-pass ¯lter and the Butterworth

low-pass ¯lter are all shown in Fig. 6(c). The spectrum of the ideal low-pass ¯lter

data has a similar changing trend as the spectrum of the original data in the low-

frequency range. Its ringing artifacts (the phenomenon of output oscillating near a

sharp transition in the input) appear, but the heights of the peaks at high-frequency

range are relatively low because gene expression values usually do not change

sharply. Consequently, there is no visible oscillation in the reconstructed pattern in

Fig. 6(b). The transition band in the Butterworth ¯lter is narrow because the

treatment-frequency band of gene expression data is usually relatively narrow (less

than 1=10 of the bandwidth of the original gene expression), which results in the

opposite frequency response.10 As a result, the spectrum obtained by the Butter-

worth ¯lter is totally di®erent from the spectrum of the original data. Consequently,

the reconstructed gene expression pattern goes down over time, which is opposite to

the original expression pattern.

In summary, more artifacts were added by using the Butterworth ¯lter compared

with the ideal low-pass ¯lter. Therefore, considering the tradeo® between removing

ringing artifact and approximating desired frequency response, an ideal low-pass

¯lter with a steep cuto® frequency rather than a Butterworth ¯lter was applied for

treating treatment-frequency components in PRIISM. In the future, more advanced

¯ltering methods should be designed to better capture clock disruptions.

4. Future Directions

To the best of our knowledge, PRIISM is the ¯rst attempt to identify and distinguish

di®erential expression resulting from cycle disruption from adaptive-response dif-

ferential expression. By applying the Fourier transform with a ideal low-pass ¯lter

and a tapering bandpass ¯lter, time-series gene expression data are decomposed into

three constituent components, each of which corresponds to treatment, circadian

clock and noise. PRIISM provides an insight into the structure of the treatment-

induced cyclic gene expression pattern disruption and achieves much better perfor-

mance than the other existing methods in detecting cold-responsive genes in the

Arabidopsis study.10 However, this solution is based on several assumptions which

simplify the biological problem.

First, PRIISM assumes the gene expression values are time invariant in a given

period timeframe, so that the Fourier analysis can be applied. Advanced period-

ograms, such as wavelet or other time-frequency analysis techniques, and the

methods discussed in Sec. 3.1, should be used to more accurately detect the time

variant periodic patterns.
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Second, the current implementation of PRIISM requires the user to pre-de¯ne

several well-known genes that exhibit circadian regulation. However, core circadian

genes have not been identi¯ed in some species and may be poorly studied or

unveri¯ed in others. In these cases, the periodic detection methods outlined in

Sec. 3.1 could be applied to automatically de¯ne dominant clock frequency compo-

nents without using core circadian genes.

Third, the reconstructed gene expression patterns [see an example in Fig. 6(b)]

have a similar changing trend as the original one but its spectrum magnitude is much

lower than that of the spectrum of original data because of Parseval's theorem.47

Therefore, a better low-pass ¯lter to reconstruct the gene expression pattern at the

low-frequency band is desired.

Fourth, measuring cyclic expression in time-series high-throughput gene expres-

sion datasets is complicated by high rates of noise, particularly for microarray

datasets.48 In addition, most of these datasets are very sparsely sampled (with 75% of

the datasets containing ¯ve or fewer timepoints49), which may result in missed peaks

or valleys in expression, or incorrect peak interpolation due to temporal aggregation

e®ects.50 RNA-seq technology, which sequences transcripts and results in much more

accurate and less noisy quanti¯cation of gene expression, is expected to replace

microarrays for high-throughput gene expression measurement.51 As the cost of

running RNA-seq experiments continues to fall,51 higher-resolution datasets with

signi¯cantly more information and less noise than existing datasets may be used to

further improve the ability of researchers to identify and remove cycle disruption

in°uences.

5. Conclusion

The treatment-induced disruption of regular cyclic gene expression patterns is a

signi¯cant challenge in novel gene discovery experiments because these disruptions

can induce strong di®erential regulation events for genes that are regulated by cir-

cadian clocks but are not involved in a response to the treatment. Although there are

many advanced existing approaches for detecting clock and cell-cycle patterns in

gene expression data, to the best of our knowledge, PRIISM is the ¯rst and only

approach which tries to distinguish the clock patterns from the data. It can be

integrated with any existing analysis approach on gene expression data to decompose

circadian-in°uenced changes in gene expression.

PRIISM has been applied to study circadian rhythm patterns but it may also be

used to separate fold-change patterns resulting from the disruption of cell cycle

patterns in synchronized cell culture experiments. Circadian rhythms exist due to

presence of environmental cues (i.e. light and darkness), but mitotic divisions require

chromosomal enlargement, organelles and chromosomes to divide and the cell walls

to expand and pinch o® into two cells entirely.52 Regardless of the little overlap

between these functions at the genetic-activity level, PRIISM, which is not limited

by the prede¯ned models, may be extended to study cell-cycle oscillations. In
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addition, PRIISM may be applied on high-throughput protein-expression datasets,

or on metabolic °ux datasets, which are similarly in°uenced by treatment-induced

circadian clock and cell-cycle pattern disruptions.

In summary, PRIISM can be applied on any high-throughput time-series ex-

pression dataset which has (A) a relatively dense sampling rate which covers at least

one cycle of the rhythmic patterns expected; (B) regular gene expression oscillations

(including circadian rhythm patterns or synchronized cell-cycle patterns) across a

large portion of the genome; (C) a list of core cycle genes identi¯ed either by per-

forming literature searches, identifying genes with very distinct clock patterns in

control conditions (Sec. 3.1), or ¯nding clock gene orthologs based on bioinformatics

comparisons to other organisms53; (D) control and treatment samples, where the

treatment may be a biotic or abiotic stress (which has a frequency of treatment which

is distinct from the cycle frequency), a di®erent living or growing environment, or a

di®erent strain of the same organism which has altered clock gene patterns.

Clock patterns may vary considerably between organisms in di®erent environ-

mental conditions so it is not advisable to apply PRIISM on multiple pooled datasets

or on data from experiments which have not had carefully controlled environmental

conditions.

As higher-resolution time-series high-throughput gene expression datasets be-

come available, there are many aspects of PRIISM which may be improved in order

to better distinguish clock and treatment�response in°uences, to produce better

datasets for performing novel gene discovery.
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