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Abstract Seventeen bacterial isolates were screened for their cellulase activity by
carboxymethyl cellulose (CMC) plate assay. The bacterial strain K1 showed the largest
depolymerized region in CMC plate assay and was further studied for quantitative cellulase
activity. On the basis of 16S rDNA sequence analysis, the strain K1 was found to be Bacillus
sp. This strain produced the maximum CMCase at pH 6 and 50 °C in the presence of peptone
(1 %) as a source of nitrogen. The CMCase activity was stimulated by Ca2+ (2 mM) by 20 %
over the control. The CMCase activity of this Bacillus sp. K1 was highly induced when lactose
was used as a source of carbon during fermentation.

Keywords Cellulase .Bacillus . Optimization

Introduction

Due to the high rates of consumption of fossil fuel, there is an increases need for finding a new
alternative source of renewable energy. Agricultural biomass is the best alternative source of
biofuels [1–3]. On average, the biomass of plants contains 30–35 % cellulose, 20–35 %
hemicellulose and 5–30 % lignin [4]. Cellulose is composed of glucose units joined together
by β-1,4 glycosidic linkages. Hemicellulose is a heterologous polymer of five and six carbon
sugars and lignin is a complex aromatic polymer. Cellulose is the major component of plant
cell wall and is one of the most fascinating renewable energy sources [5, 6]. However,
cellulose is not easily amenable to the fermentation which is essential for lignocellulosic
biorefineries. For this, the degradation of cellulose to glucose is an important step. This can be
achieved by cellulase which is produced naturally by microorganisms mainly bacteria and
fungi [7].

Cellulases are responsible for breaking down the glycosidic linkage in a polysac-
charide cellulose [8] and hydrolyse cellulose into glucose units. There are three types
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of cellulases which act synergistically. These enzymes are exoglucanase (cleaving β-
1,4 glycosidic bonds from chain ends), endoglucanase (randomly cleaving β-1,4
internal linkages) and β-glucosidase (cleaving final β-1,4 linkage of cellobiose or
small polysaccharides) [9]. Most of the cellulases currently used in industrial scale are
produced by fungi because of their ability for high enzyme secretion. Bacteria may be
considered more ideal candidates for cellulase production as they are fast growing and
culturable [10]. Cellulases have several industrial applications including biofuel pro-
duction, cotton softening, denim finishing, adding to detergents and washing powders
[11, 12]. The cellulase-producing bacteria have been isolated from different sources
over the past decades. These sources include soil, decaying wood samples, faeces of
ruminants and insect guts [13]. The present study concentrates the isolation and
characterization of efficient cellulase-producing bacteria from rotting wood samples
which are one of the abundantly available lignocellulosic sources with the possible
presence of the cellulase-producing bacteria and optimization of the enzyme activity
for the possible use in industrial scale.

Materials and Methods

Bacterial Strains Isolation and Identification

The samples were collected from the premises of Lakehead University, Thunder Bay, ON,
Canada. One gramme sample of the rotting wood was suspended in 100 ml of distilled water
and was homogenized by vortexing. Serial dilutions of 10× were made by adding autoclaved
distilled water. One hundred microlitres of each dilution was spread by using standard spread
plate method over LB agar plates containing peptone 10 g l−1, yeast extract 5 g l−1, NaCl
5 g l−1 and agar 15 g l−1. The plates were incubated for 24 h before sampling. From the plates,
different colonies of bacteria were selected based on their morphological features like size and
colour. The pure cultures were streaked out in carboxymethyl cellulose (CMC) agar plates
containing CMC 0.5 g, NaNO3 0.1 g, K2HPO4 0.1 g, KCl 0.1 g, MgSO4 0.05 g, yeast extract
0.05 g and agar 1.5 g in 100 ml.

Screening for Carboxymethyl Cellulase Activity

The pure bacterial strains were cultured overnight in 7 ml of LB liquid media at 30 °C along
with Cellulomonas xylanilytica and Escherichia coli JM109 which were used as positive and
negative controls, respectively. Five microlitres of each isolate was dropped in a petri plate
containing CMC agar medium and then incubated at 30 °C for 48 h. Then, the CMC plates of
all the isolates including controls were stained using Gram’s iodine solution (2.0 g KI and 1.0 g
I, per 300 ml ddH2O) for qualitative cellulase assay. The iodine solution stains the agar
containing CMC, forming clear zones in the areas without CMC. These clear zones are known
as halo regions which indicate the cellulase activity by the bacteria.

DNA Extraction and Amplification of 16S rDNA

The genomic DNA of the cellulase-positive isolates was isolated by using ultraclean microbial
DNA extraction kit. The extracted DNA was amplified using primers HAD-1 (5′-
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GACTCCTACGGGAGGCAGCAGT-3′) and E1115R (5′-AGGGTTGCGCTCGTTGCGGG-
3′). The reaction mixture (25 μl) composed of each primer 1 μl, PCR master mixture
12.5 μl, ddH2O 8.5 μl and DNA template 2 μl. The PCR was used as follows:
primary denaturation 3 min at 95 °C, followed by 35 amplification cycles consisting
of denaturing at 95 °C for 1 min, annealing for 1 min at 63 °C, and extension at
72 °C for 1 min, upon completion of 35 amplification cycles; a final extension step
was done at 72 °C for 10 min. The PCR products were visualized in 1 % gel
electrophoresis. The DNA from gel was purified by using Geneaid PCR/Gel purifi-
cation kit (FroggaBio, Canada) by following the manufacturer’s protocol. Then, the
purified samples were sent for sequencing to Euroffins Genomics (USA).

Isolates Identification and Phylogenetic Relationship

The sequencing results were inputted to NCBI database (http://blast.ncbi.nlm.nih.gov/) for
possible identification of bacterial genera using Basic Local Alignment Sequencing Tool
(BLAST). The phylogenetic relationship was analysed by using sequence alignment
programs ClustalX and TreeView.

Bacterial Growth and Carboxymethyl Cellulase Assay

The isolate showing the highest activity in plate assay was further screened for
quantitative cellulase assay by growing it LB liquid medium then in minimal salt
medium containing 0.1 g l−1 NaNO3, K2HPO4 0.1 g l−1, KCl 0.1 g l−1, MgSO4

0.05 g l−1 and 1 % CMC as a source of carbon. Its growth was observed at different
time intervals. Carboxymethyl cellulase (CMCase) activity was determined by mea-
suring the release of reducing sugars from CMC. A modified microplate-based assay
using 3, 5-dinitro salicylic acid (DNS) method was used to measure the reducing
sugar [14]. For this, 20 μl of cell-free enzyme supernatant was prepared and mixed
with 80 μl solution of 0.5 % CMC and 0.5 M citrate buffer of pH 6 and was
incubated for 30 min at 50 °C. The reaction mixture was terminated by adding 200 μl
DNS, and the mixture was boiled for 5 min. The absorbance was determined at
540 nm.

Optimization of Cellulase

For the optimization of cellulase activity, in most of the experiments, 20 μl of cell-free
supernatant was mixed with 80 μl solution of 0.5 % CMC and 0.5 M citrate buffer and the
mixture was incubated for 30 min at 50 °C.

Effect of Incubation Period in Cellulase Production

The culture tubes containing minimal salt medium (NaNO3 0.1 g l−1, K2HPO4 0.1 g l−1,
KCl 0.1 g l−1 and MgSO4·7H2O 0.05 g l−1) and 1 % CMC were cultured, and 1 ml of
sample was harvested on each day starting from the first day of inoculation. The cell-free
supernatant was used for enzyme assay. During CMCase assay, the reaction mixture
contained 20 μl enzyme supernatant, 80 μl substrate buffer (0.5 M citrate buffer (pH 6)
and 0.5 % CMC).
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Effect of pH and Temperature on Cellulase Activity

The CMCase activity was measured at different acidic, neutral and basic pH. Similarly, the effect
of temperature on cellulase activity was carried out at different temperatures from 30 to 70 °C.

Effect of Metal Ions and Surfactants

The effect of different metal ions, Ca2+, Co2+, Mg2+, Mn2+ and Zn2+ in their chloride salts, on the
activity of cellulase was determined by performing the CMCase assay in the presence of these metal
ions (2 mM) at 50 °C for 30 min. For this assay, the reaction mixture contained 20 μl enzyme
supernatant, 10 μl metal ion, 70 μl 0.5 M citrate buffer (pH 6) and 1 % substrate (CMC). Further,
different concentrations of the most effective metal ion were used. The effects of detergents sodium
dodecyl sulphate (SDS, 10 mM) and Triton X-100 (10 %) were observed on the CMCase activity.
For this, the amount of the detergents was same as that of metal ions under the similar conditions.

Effect of Different Nitrogen Sources on Cellulase Production

Nitrogen sources (0.5 %w/v) used were yeast extract (YE), peptone, urea and ammonium
sulphate [(NH4)2 SO4] in the enzyme production medium to determine their effects in enzyme
production. For determining the best concentration of the most effective nitrogen source, the
activity was tested under the same optimal pH and temperature.

Effect of Carbon Sources on Cellulase Production

Various carbon sources (1 %w/v) were used to determine the effect of carbon source on
cellulase production medium. The carbon sources used were CMC, glucose, sucrose, sorbitol,
lactose, mannose and galactose.

SDS-Polyacrylamide Gel Electrophoresis

For the determination of molecular weight of the cellulase from the isolated bacterial strain K1,
the crude enzyme was first incubated at 50 °C for 5 min and was run along with standard
protein markers in 10 % SDS-polyacrylamide gel electrophoresis (PAGE) according to
Laemmli [15]. For this, the electrophoresis was carried out with the constant supply of
200 V current. The gel was stained with Coomassie Brilliant Blue R-250 solution for 1 h
and destained with decolor buffer for proteins and marker bands. The SDS gel containing
0.25 % CMC was used for the detection of cellulase activity and was washed with Triton X-
100 for 15 min then it was incubated at pH 6 buffer at 50 °C for 30 min. Following this, the gel
was washed and stained with 0.1 % Congo red for 30 min and destained with 1 M sodium
chloride solution for zymogram analysis.

Statistical Analysis

All the experiments were performed in triplicates, and the results are expressed in terms of
mean±SD (standard deviation). The statistical analysis of data was performed to test the
significant difference by one-way analysis of variance (ANOVA) followed by Tukey’s HSD
test (p<0.05) using system.
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Results and Discussion

Isolation and Identification

Sixty bacterial samples were collected from different locations around Thunder bay,
ON, Canada. Seventeen strains showed cellulase activity in CMC agar plate assay
(Fig. 1). This method of isolation was found easy for preliminary screening of
cellulolytic bacteria. The strains were compared with a cellulase-producing positive
control (C. xylanilytica) and negative control (E. coli JM109) with no cellulase
activity [16]. The bacterial strain K1 showed the largest diameter of halo region
and was selected for further enzyme assay (Fig. 1). The morphological examination
showed the colonies of the strain K1 as a rough opaque and grey. The other bacterial
colonies also exhibited similar morphological features. As there are wide varieties of
cellulase-producing bacteria in the environment, their morphological features make the
isolation of bacteria easier from different sources.

DNA Extraction and Amplification of 16S rDNA

The genomic DNA of all the 17 isolates was successfully extracted. The PCR primers
successfully amplified 16S rDNA fragments. 1 % agarose gel showed the clear bands of about
800 bp.

+ve              -ve 
Controls

14S3                  16S3                17S3                    A0                          K1

7S1                    8S1                    9S1                   10S1                   12S1               13S3

1S2                      2S2                      3S2                 4S2                 5S2                      6S1

Fig. 1 Seventeen cellulase-producing isolates and positive and negative controls, C. xylanilytica and E. coli
JM109
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Isolate Identification and Phylogenetic Analysis of 16S rDNA Sequences

The sequences of all the 17 isolates were analysed by using nucleotide blast of NCBI database.
The genera of 17 isolates were identified on the basis of DNA sequences homology. The
isolates are related to Bacillus (12), Pseudomonas (3), Rahnella (1) and Buttiauxella (1). The
sequence for K1 was successfully uploaded to NCBI gene bank database (Accession no.
KP987117).

For the phylogenetic analysis, the sequencing results of all the 17 cellulase-producing
bacterial isolates were aligned using ClustalX UPGMA algorithm. The sequences were
uploaded into TreeView for phylogenetic relationship analysis (Fig. 2). The phylogenetic
analysis revealed that the isolates belong to two groups Firmicutes and Proteobacteria. The
Bacillus strains are related to Gram-positive Firmicutes and the strains Pseudomonas,
Rahnella and Buttiauxella are related to Gram-negative Proteobacteria. Both the groups of
bacteria can degrade the cellulosic materials.

Growth of Strain K1 and CMCase Production

A time course of the bacterial strain and enzyme production was performed over a period of
120 h. The strain K1 showed maximum growth after 3 days of incubation. Also, the cellulase
yield reached a maximum at 72 h of incubation (Fig. 3) which was significantly different to the
cellulase production at 24, 96 and 120 h. The fermentation period is an important factor for
enzyme production by microorganisms [17]. Similar results of maximum production of
cellulase at 72 h of incubation were found by other researchers. The Bacillus pumulis
EWBCM1 and Bacillus sp. B21 showed maximum endoglucanase after 72 h incubation
[18, 19]. However, this enzyme production time was different from other researchers who
reported the maximum endoglucanase after 24 h in Pseudomonas sp. HP207 [20] and
Pseudomonas flourescens NCIB [21], 96 h in Bacillus circulans and Bacillus subtilis and
142 h incubation for Clostridium cellulolyticum [22]. The Bacillus strains produce cellulase at
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3.5 
2.9 
3.8 
2.9 
3.0 
4.5
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1.5
2.9
1.3
3.4

8S1 Pseudomonas
2S2 Psedomonas
7S1 Pseudomonas
12S1 Rahnella
13S3 Buttiauxella
3S2 Bacillus
A0 Bacillus
6S1 Bacillus
4S2 Bacillus
K1 Bacillus
16S3 Bacillus
17S3 Bacillus 
14S3 Bacillus
1S2 Bacillus
9S1 Bacillus
5S2 Bacillus
10S1 Bacillus
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Fig. 2 Phylogenetic tree depicting the evolutionary relationships between the 17 cellulase-positive bacterial
isolates (displayed using TreeView) and halo diameter (cm). The isolates outlined in black belong to Firmicutes
and those dashes that outlined isolates belong to Proteobacteria. The numbers represent the halo diameters
produced by the cellulase-producing bacteria in CMC agar plates
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different time intervals and are regarded as the important cellulase producers in enzyme
industry [23].

The CMCase activity of strain K1 was compared with positive control C. xylanilytica and
negative control E. coli JM 109. The CMCase activity of strain K1 was 5.21±0.21 U/ml
(Fig. 3) whereas this activity for C. xylanilytica was 2.28±0.51 U/ml and E. coli JM 109
exhibited no CMCase activity. One unit (U) of cellulase activity is defined as the amount of
enzyme necessary to release 1 μmol reducing sugar per minute per millilitre. This enzyme
activity of strain K1 was found higher than those of widely studied bacteria and some fungi,
which have received wide attention for commercial production of cellulase [24]. Sheng et al.
[20] reported endoglucanase activity by Pseudomonas sp. under optimized conditions to be
1.432 U ml−1. Under different nutritional and environmental factors, the endoglucanase
activity of Bacillus pumilus and Aspergillus niger, and Trichoderma harzianum Rut-C 8230
did not exceed 1.0 U ml−1 [25–28]. Similarly, CMCase activity was only 0.12 U/ml by
Bacillus sp. [29] and 0.8 U/l by Geobacillus sp. [30]. However, this CMCase activity by the
isolate K1 was less than that of other Bacillus species such as B. subtilis subsp. subtilis A-53
[31] and B. subtilis CY5 and B. circulans TP3 [32].

Effect of pH and Temperature on Cellulase Activity

The CMCase activity of strain K1 was found maximum at pH 6 (Fig. 4a) which was
significantly different to other pH tested during the experiment (p<0.05). The enzyme showed
significant decrease after this pH retaining 38 % of its activity at pH 8. A similar result was
also reported in Bacillus sp. CH43 [33]. A pH of 6.5 was found to be optimal in other Bacillus
strains [31, 33]. The Bacillus strains CH43 and HR68 showed stable cellulase activity in pH 6–
8 [34].

Microbial cellulase activity has been influenced by temperature. The optimal temperatures
are different in different bacteria. The bacterial strain K1 showed cellulase activity from 30 to
70 °C. The maximum enzyme activity was found at 50 °C, and this activity was significantly
different to the CMCase activity at 30, 60 and 70 °C (p<0.05). At 70 °C, the enzyme showed
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Fig. 3 Growth of Bacillus sp. K1 and its CMCase production
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19 % of its relative enzyme activity (Fig. 4b). Similar results have been reported in other
Bacillus spp. [31, 34–37].

Effects of Metal Ions and Surfactants on Cellulase Activity

The CMCase activity by Ca2+ was significantly different (p<0.05) to control other metal ions
and detergents used in the experiment (Fig. 5a). Fu et al. [38] also reported that Ca2+, Mg2+ and
Mn2+ had a positive effect on endoglucanase activity of Paenibacillus sp. BME-14. Ca2+ ions
have been found essential for enhancing the substrate binding affinity of the enzyme [39].
Maximum enzyme activity was observed at 2 mM Ca2+ (Fig. 5b).

The cellulase produced by strain K1 was not tolerant to the common detergents SDS and
Triton X-100. The enzyme was reduced to about 60 % while using these surfactants (Fig. 5a)
which was significantly lower than the control (p<0.05). It might be because of the interaction
of detergents with the hydrophobic group of amino acids. The surfactant-like SDS has been
found to reduce the endoglucanase activity [40].
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Effect of Different Nitrogen Sources in Culture Medium During Cellulase
Production

The production of cellulase is sensitive to the source of nitrogen. The maximum CMCase
activity was found by using peptone as a source of nitrogen (Fig. 6a) which was
significantly different to ammonium sulphate and urea (p<0.05). The Bacillus strain
could utilize the source of organic nitrogen. The reduction in the production of inorganic
nitrogen source might be due to the medium acidification which affected the cellulase
production. The Bacillus sp. isolated by Yang et al. [41] and Bairagi et al. [42] showed
similar results of organic nitrogen source for cellulase production. However, the
B. subtilis could utilize both the inorganic and organic nitrogen sources for cellulase
production [43]. The use of 1 % of peptone enhanced the production of cellulase by
12 %. On increasing the concentration of peptone after 1 %, the enzyme activity was
decreased significantly (Fig. 6b).

Effect of Different Carbon Sources in Culture Medium During Cellulase Production

In this experiment, the results showed that the strain K1 could utilize various carbon sources in
the production medium and the use of lactose in the culture medium showed a significantly
different and higher CMCase activity (p<0.05) to that of another source of carbon used in the
experiment (9.96±0.23 U/ml) (Fig. 7a). While using different concentrations of lactose, the
maximum cellulase was produced when 1 % lactose was used in the medium (Fig. 7b). Since
the cellulase is an inducible enzyme, the production of enzyme is enhanced sometimes by
some sources of carbon in the medium.

Lactose in the production medium was quickly taken up by the isolated Bacillus
strain and the CMCase was produced. It might be due to the lactose-induced enzyme
activity or increased rate of penetration through the cell membrane [44]. Also, lactose
enhances the cellulase yield by stimulating the secretion of various proteins with
cellulase. Other researchers also reported the maximum CMCase production by using
lactose as a source of carbon by Microbacterium sp. [45], Aspergillus hortai [46] and
Trichoderma reesei [47].
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SDS-PAGE and Zymogram Analysis

Based on the zymogram which was run under the conditions of SDS-PAGE, the molecular
weight of the crude cellulase was estimated ∼36 kDa (single band of K1, Fig. 8). This is
similar to the findings of many researchers who reported the molecular weight of cellulases
from 37 to 43 kDa in Bacillus species [48–50]. However, this molecular weight of cellulase
was lower than the other species of Bacillus from which cellulases had molecular weights of
53–78 kDa [51–53].
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Conclusion

Seventeen cellulase-producing bacterial isolates were obtained from different rotting wood
samples. The isolate K1 produced higher cellulase in plate assay than other isolates. On the
basis of 16S rDNA sequence analysis, the strain K1 was found to be Bacillus sp. This strain
produced maximum CMCase (5.21±0.21 U/ml) at pH 6 and 50 °C after 72 h of incubation.
The cellulase produced by this strain was enhanced by Ca2+ ions. In the production medium,
1 % peptone enhanced the cellulase production by 12 % over the control. Similarly, lactose
induced the CMCase, nearly doubling the enzyme activity (9.96±0.23 U/ml). So, this strain is
of particular interest using induction for producing maximum cellulase which might be
valuable for biorefining industries. Based on SDS-PAGE analysis, the molecular weight of
the cellulase was found ∼36 kDa.
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