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ABSTRACT

Motivation: Determining the best sampling rates (which maximize in-

formation yield and minimize cost) for time-series high-throughput

gene expression experiments is a challenging optimization problem.

Although existing approaches provide insight into the design of opti-

mal sampling rates, our ability to utilize existing differential gene

expression data to discover optimal timepoints is compelling.

Results: We present a new data-integrative model, Optimal Timepoint

Selection (OTS), to address the sampling rate problem. Three experi-

ments were run on two different datasets in order to test the perform-

ance of OTS, including iterative-online and a top-up sampling

approaches. In all of the experiments, OTS outperformed the best

existing timepoint selection approaches, suggesting that it can opti-

mize the distribution of a limited number of timepoints, potentially

leading to better biological insights about the resulting gene expres-

sion patterns.

Availability: OTS is available at www.msu.edu/�jinchen/OTS.
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1 INTRODUCTION

Time-series high-throughput gene expression experiments can

measure the expression levels of tens of thousands of genes in

a biological sample over time and provide dynamic information

which can be used to construct regulatory networks and infer

regulatory relationships among genes (Wang et al., 2008).

Although there are several thousand time-series microarray

and RNA-seq datasets on the Gene Expression Omnibus

(GEO) database (Edgar et al., 2002), as of June 2012, most of

these contain very few timepoints. Figure 1 shows that475% of

these datasets (in which ‘time’ has been set as a subset variable

type) in GEO contain five or fewer timepoints. Given that re-

searchers are often limited to being able to sample very few time-

points, it is extremely important to choose the most appropriate

timepoints for observing strong target gene expression pattern

changes. With a fixed number of samples, researchers can choose

between (i) a very densely sampled short time-series experiment,

in which important gene regulation events that do not occur

quickly may be missed or (ii) a sparsely sampled long time-series

experiment, where improperly positioned timepoints can lead to

missing rapid but important regulation events and can also lead

to temporal aggregation bias (which reduces the ability to infer

actual regulatory relationships; Singh et al., 2005).
Determining the best sampling timepoints for sparsely

sampled time-series high-throughput experiments is a challenging

optimization problem that is frequently discussed in the biolo-

gical literature (Chikina et al., 2009; Gustafsson and Hornquist,

2010; Marioni et al., 2008; Massonnet et al., 2010; Wang et al.,

2008).
An active learning algorithm has been developed for iteratively

choosing timepoints to sample, using the uncertainty in the in-

terpolation of the currently estimated time-dependent curve as

the objective function (Singh et al., 2005). The performance

evaluation in this study showed that this algorithm can find op-

timal timepoints such that majority cycling yeast genes can be

identified.
However, to capture the differential gene expression patterns,

the interpolation step requires a minimum of five timepoints

(according to their online documentation), so it would not

have been applicable for 75% of the existing datasets in GEO

and would have only been able to predict very few timepoints in

almost all of the existing datasets.
Furthermore, active learning is based only on the differential

gene expression data in the dataset to which a new timepoint will

be added, and existing time-series datasets using similar treat-

ments (which may be high resolution and contain useful differ-

ential gene expression information) cannot be applied in the

algorithm. Although other advanced gene expression prediction

or interpolation methods can utilize sequence information (Beer

and Tavazoie, 2004) and ‘biologically plausible’ constraints

(Falin and Tyler, 2011) on gene expression estimates, these

approaches do not address the complicated issue of timepoint

selection among large groups of genes and also cannot utilize

existing data.

In this article, we present a new model called Optimal

Timepoint Selection (OTS) to identify optimal sampling time-

points for new microarray and RNA-seq experiments, based*To whom correspondence should be addressed.
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on gene expression data in existing datasets. We build OTS based

on three observations: (1) Gene expression experiments can be

sampled in an online fashion; i.e. samples can be treated and

collected at a high rate and then stored at a relatively low cost,

and particular samples can be measured at a later time, after

deciding which timepoint will be optimal (Singh et al., 2005).

(2) A researcher is usually interested in capturing the expression

patterns of a subset of genes (which may be grouped into several

clusters with similar expression patterns) associated with a given

treatment/condition. and (3) Differential gene expression pat-

terns from previous experiments performed under similar treat-

ments/conditions can provide information valuable for defining

an optimal timepoint for sampling, even if the sampling rates are

different from the new experiment.
Based on these observations, a straightforward approach to

choosing the best timepoint is to find unsampled timepoints at

which there are significant upregulation or downregulation

events for the genes of interest in the existing datasets. This ap-

proach is based on the assumption that the differential expres-

sion patterns for the genes of interest in existing datasets are

similar to each other and are similar to the dataset to which a

timepoint will be added. However, in practice, this assumption

may be violated in many cases due to (1) large differences in the

dynamic ranges between platforms (e.g. RNA-seq technology

has a dynamic range several orders of magnitude higher than

microarray technology; Marioni et al., 2008); (2) inconsistency

among different datasets, either due to different growing condi-

tions, different treatments or ‘lab signatures’, which result in

differences in differential gene expression patterns among differ-

ent laboratories, even after attempts to reproduce conditions

exactly (Massonnet et al., 2010); (3) high noise rates in expression

values, particularly for microarray datasets (Marioni et al., 2008)

and (4) sparse sampling rates in existing data.

To address these data integration problems, we have de-

veloped OTS, which includes a novel method of combining dif-

ferential gene expressions from existing datasets (‘training’

datasets) based on their similarity to the experiment to which

timepoints will be added (‘current’ dataset). OTS is novel in

the following ways:

(1) Projection of differential gene expression to threshold

space: In contrast to existing differential gene expression

prediction algorithms (Chikina et al., 2009; Falin and

Tyler, 2011; Gustafsson and Hornquist, 2010), the goal

of our method is to predict the best timepoints to add to

a high-throughput experiment. Therefore, rather than

focusing on specific expression patterns, we are instead

interested in how many genes are significantly differen-

tially expressed at each timepoint, and how significant

the overall expression values are (in a categorized fashion).

Consequently, we project the differential gene expression

values to threshold space to better capture important regu-

latory timepoints (explained in Section 2.3).

(2) Data normalization and scaling: Instead of averaging or

pooling all of the training data together, we first weight

each training data’s contribution to the overall result based

on their similarity to the current dataset. Then, we adjust

the weighted-average values with a shifting function for

local fitting (explained in Section 2.4).

(3) Timepoint selection with multi-objective optimization

(MOO): We adopt a MOO model to select the overall

optimal timepoint for all of the clusters (Coello, 1999).

MOO is superior to the sampling voting method because

timepoints chosen by MOO benefit all (or the majority) of

clusters, while the sampling voting method may be biased

to one or a few clusters (explained in Section 2.5).

The overall experimental approach for OTS is shown in

Supplementary Figure S1 and Section S1. First, a biological ex-

periment is performed, and samples are preserved at dense time-

points. A subset of timepoints (including at least the last

timepoint in the range of interest and one other timepoint) is

sampled. Then, time-series training datasets are collected. It is

not necessary for the training datasets to be collected using the

same technology (i.e. PCR, microarray or RNA-seq experi-

ments), but they should use treatments or conditions that are

expected to affect target treatment–response genes in the same

way as in the current dataset. OTS produces a ranked list of the

optimal timepoints to be selected next. The optimal timepoint(s)

can then be sampled and added to the current dataset for the

identification of the next optimal timepoint. This process can

then be continued iteratively until all of the samples or all of

the resources available for sampling are used up. This

online-sampling approach is advantageous when studying organ-

isms for which the sample collection step is significantly less ex-

pensive than the gene expression measurement step. For difficult

or costly experiments (including clinical experiments), it is more

logical to measure the gene expression in every available sample

(Singh et al., 2005).

In the performance experiments in this study, OTS was applied

using high-throughput time-series datasets for two different or-

ganisms (yeast and Arabidopsis) utilizing different platforms

(microarray and RNA-seq). Noisy, sparsely sampled and

poorly matched datasets were used as training. In all the experi-

ments, OTS clearly outperforms the existing approaches.

2 METHODS

The goal of this article is to develop a computational algorithm to design

the sampling rate of time-series gene expression experiments such that the

real differential gene expression patterns for genes of interest are captured

as accurately as possible.

Specifically, our approach is to generate an estimate dataset by inte-

grating training data, and to identify the timepoint at which the estimate

dataset is the most different from the current dataset, which may result in

the identification of the most significant differential regulation events

missing in the current dataset.

Fig. 1. Histogram of the number of timepoints in each time-series

high-throughput gene expression dataset in the GEO database
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Mathematically, given training datasets R ¼ fR1,R2, . . . ,Rmg, a cur-

rent dataset U (with differential gene expression values available at time-

point set TS and unmeasured biological samples available at timepoint set

TA), rank the optimal timepoints in the timepoint set Topt, such that the

best-ranked timepoints minimize the difference between the interpolated

and real differential gene expression curves for all genes of interest G. The

outline of OTS is shown in Algorithm 1.

2.1 Case study

For demonstration purposes, we used an Arabidopsis coronatine-

treatment dataset as a case study (Fig. 2A). This dataset was produced

to determine the effect of the phytotoxin coronatine (a molecular mimic

of the plant hormone jasmonate) on global gene expression (manuscript

in preparation). We used this densely sampled (21 timepoint) RNA-seq

dataset as a mock ‘current’ biological experiment (first row in Fig. 2A),

and a number of existing microarray datasets involving coronatine/jas-

monate treatment as training datasets (see Section 3.1; Chung et al., 2008;

Wierstra and Kloppstech, 2000). This case study starts with six time-

points, at 0.25 h (the first), 24h (the last), and 1, 2, 3 and 5h (selected

iteratively by the first four rounds of OTS selection), and the fifth round

of timepoint selection will be outlined in detail here (see Section 3.3).

2.2 Differential gene expression clustering and

interpolation

As the first step of OTS (line 1 in Algorithm 1), all of the genes of interest

(G) are clustered using K-means clustering [Dembl and Kastner, 2003;

implemented in Cluster 3.0 (http://rana.lbl.gov/EisenSoftware.htm); Eisen

et al., 1998] based on their differential gene expression values in the

training datasets R, which produces C, the set of clusters. In the case

study, the coronatine-responsive genes were separated into 10 clusters; the

log2 fold change curves for the 13 genes in one of these clusters are shown

in Figure 3A.

To estimate the differential gene expression patterns at all timepoints,

OTS linearly interpolates the values from the current (U) and the training

(R) datasets to every available timepoint in TA (Algorithm 1, lines 4 and

5; Meijering, 2002). Linear interpolation was used in order to minimize

the inference of false peaks and valleys in the expression data (Benesty

et al., 2004) and to avoid over-smoothing unevenly spaced timepoints,

which occurs on sparsely sampled datasets when using other common

interpolation methods (Meijering, 2002).

2.3 Projection of differential gene expression to

threshold space

In the second step of OTS, rather than focusing on specific expression

patterns, we capture important regulatory timepoints by measuring how

many genes are significantly differentially expressed at each timepoint,

and how significant the overall expression values are (in a categorized

Algorithm 1 Optimal Timepoint Selection

Input: U: current differential gene expression dataset

R: set of training differential gene expression datasets

G: set of genes of interest

H: threshold number

TS: set of timepoints measured in U

TA: set of available but unmeasured timepoints

Output: Topt: set of ranked optimal timepoints

1: C clustering(G, R)

2: Q ;

3: for all cluster c 2 C do

4: IR  DataInterpolation(R, TA)

5: IU  DataInterpolation(U, TA)

6: DR  ;; DU  ;

7: for all t 2 TA [ TS do

8: DR  DR[ Thresholding (IR, H, t)

9: D̂ D̂[ Thresholding (IU, H, t)

10: end for

11: Q Q[ NormalizationAndScaling(DR,DU)

12: end for

13: Topt MultiObjectiveOptimization(Q)

14: return Topt

Fig. 3. A case study example of differential regulation count (DRC) cal-

culation for one cluster. (A) Differential gene expression values from TS

(dashed black lines) are used to interpolate values in TA: (B) Regulation

thresholds are shown (dashed lines). (C) The number of genes crossing

each threshold value are counted at each timepoint (D̂3¼37; Equation

(1)) (D) DRC curves in the current dataset (black line) and the four

training datasets (grey lines). (E) DRC curves after shifting using only

non-negative least-squares (NNLS) regression. (F) DRC curves after

NNLS and sigmoid-weighted shifting (Equation (2))

Fig. 2. Description of current and training datasets used for (A) the

Arabidopsis experiment and (B) the yeast experiments
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fashion). Consequently, unlike the existing approaches of sampling rate

design (which focus on the inference of values of differential gene expres-

sions; Chikina et al., 2009; Falin and Tyler, 2011; Gustafsson and

Hornquist, 2010), we project the differential gene expression data of

each cluster into threshold space, where the values for a given timepoint

are determined based on how many genes have differential gene expres-

sion values which are higher (or lower) than a series of differential regu-

lation thresholds (Fig. 3B; Algorithm 1, lines 6–10). This thresholding

process reduces noise in the comparison among datasets by ignoring

small fluctuations in differential gene expression value patterns while

capturing the overall pattern of the larger gene expression changes at

various magnitudes.

To avoid the bias introduced by setting only one regulation threshold

value, multiple evenly spaced positive and negative differential regulation

threshold values are defined to determine the degree to which a cluster of

genes is differentially regulated at a given timepoint i, according to

Equation (1). Given a user-defined threshold number H, we divide the

threshold space (3 SDs above and below the average differential gene

expression value) into two H sections. For example in Figure 3B, an

H-value of 6 has been used, and threshold values are shown.

Mathematically, to perform thresholding for a gene g with an expres-

sion value at timepoint i in dataset Rj, we compute its differential regula-

tion count (DRC) by counting how many thresholds it is higher (or

lower) than if it is up- (or down-) regulated. This represents the DRC

for timepoint i in dataset Rj (D
ij; Equation (1)). Higher DRC numbers

indicate stronger differential regulation, regardless of whether the genes

are upregulated or downregulated. The use of multiple thresholds ensures

that changing patterns in experiments with different dynamic ranges are

captured. For example, in Figure 3C, one gene crosses the top upregula-

tion threshold (at 4.11), and three genes cross the next upregulation

threshold (at 3.29). These counts are made for each regulation threshold

and summed (Equation (1)). DRC curves for all the training and current

datasets for cluster 2 in this case study are shown in Figure 3D.

Dij¼
X
g2Gc

XH
h¼1

eijg�
ð�þ3�Þðh�1Þ

H

� �
40

� �
þ eijg �

ð��3�Þðh�1Þ

H

� �
50

� �

ð1Þ

where Dij is the DRC for timepoint i in one cluster in dataset Rj, H is the

user-defined threshold (H41), eijg is the differential expression measure-

ment for gene g (out of the set of genes in a cluster) and � and � are the

average and the standard deviation values, respectively, for the differen-

tial gene expression values across all timepoints and all genes of interest G

in all the training datasets. Operator [x] returns 1 if x is true, otherwise it

returns 0. Similarly, DRC values for the current dataset (D̂i) are calcu-

lated for each timepoint i in each cluster.

2.4 Data normalization and scaling

To ensure that OTS allows for efficient computation and is capable of

integrating heterogeneous training data, DRC values are saved in a

cluster-time-experiment (CTE) table for each cluster. Table 1 shows the

layout of the CTE table, which includes DRC values (Dij) for every time-

point i (1 � i � n) in every training dataset j (1 � j � m) in one cluster.

An ‘estimate’ DRC dataset is generated for each cluster by combining

the training datasets from the CTE table, and the difference between the

current and estimate DRC datasets is measured at each timepoint, where

the largest difference is the optimal timepoint for each cluster. However,

combining the training DRC datasets into an estimate DRC dataset is a

difficult problem because the training DRC datasets may not be similar

to each other or to the current DRC dataset (Fig. 3D). Although there

are numerous ways to normalize and scale the datasets (such as

least-squares estimation), the challenge is that the difference between

the estimate and current DRC datasets will not converge to 0 even if

numerous timepoints are added (because of differences among

experimental conditions and among sampling rates), leading to biased

estimations of the differential gene expression patterns. To tackle this

problem, we have developed a novel two-step (global matching and

local fitting) normalization and scaling approach (Algorithm 1, line 11).

In the first step (global matching), we weight each training DRC data-

set’s contribution to the overall result based on their similarity to the

current DRC dataset in each cluster using NNLS regression (Chen

et al., 2010; Lawson and Hanson, 1995). Mathematically, given a

n�m matrix of DRC values derived from the training DRC datasets

(Dij), and an n� 1 vector of DRC values derived from the current

DRC dataset (D̂), a non-negative m� 1 weight vector w is calculated,

which minimizes the difference between weighted training and current

DRC datasets (i.e. w ¼ argmin jjDw� D̂jj2). This weight vector w is

then used to calculate a weighted-sum NNLS estimate DRC dataset

(Fig. 3E). By forcing all of the weight values to be non-negative, it

avoids a problem introduced by standard LSE regression, wherein nega-

tive weights can ‘flip’ the patterns, changing peaks to valleys and provid-

ing false information in the estimation. This step also results in

normalization of experiments with different dynamic ranges.

In the second step (local fitting), in order to correct the NNLS estimate

fit, NNLS-weighted sum DRC values are shifted for each timepoint, such

that the final estimate DRC dataset values are equal to the current data-

set DRC values at every sampled timepoint TS (indicated by vertical

dashed grey lines in Fig. 3F). The rest of the timepoints in the

NNLS-weighted estimate DRC dataset are shifted by an amount sug-

gested by the sampled timepoints and modulated by their distance from

the sampled timepoints according to a sigmoid weight distributed (Chen

and Mangasarian, 1995; Marler et al., 2006).

In summary, the estimate value at timepoint ti ( �Di) is defined as

�Di ¼

D̂
i

if ti 2 TS

Pm
j¼1

wjD
ij þ

2 D̂
t
�
Pm
j¼1

wjD
tj

� �

1þe
5jt�ti j
jTA[TS j

otherwise

8>>><
>>>:

; ð2Þ

where

t ¼ arg max
t2TS

D̂t �
Xm
j¼1

wjD
tj

�����
�����

and ti is a timepoint in the interpolated current dataset (TA [ TS), D̂t is

the DRC value for timepoint t in the current DRC dataset (D̂), Dij is the

DRC value for timepoint ti in training DRC dataset (Rj) and wj is the

weight assigned by NNLS for training dataRj: In the fraction component

of this equation, the numerator calculates the largest observed shift (i.e.

the largest amount of disagreement between the NNLS estimate and the

sampled timepoints in the current dataset), which occurs at timepoint t.

The denominator then reduces the amount of this shift for the given

timepoint ti, such that the shift will be smaller if there is more distance

between ti and t.

Table 1. CTE table storing DRC values for one cluster

Timepoint Training datasets Current

dataset

Estimate

R1 R2 . . . Rm D̂ D

t1 D11 D12 . . . D1m D̂1 �D1

t2 D21 D22 . . . D2m D̂2 �D2

. . . . . . . . . Dij . . . . . . . . .

tn Dn1 Dn2 . . . Dnm D̂n �Dn

Each row represents a timepoint available for sampling (TA), and there are columns

for the training (R1 . . .Rm), current (D̂) and estimate (D) datasets.
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The curve difference score (Qi ¼ jD̂i � �Dij) is the difference between

the estimate and current dataset curves at timepoint ti: Figure 3F shows

that for the cluster outlined in the case study, 12 h is the optimal time-

point, which is in agreement with the actual DRC value at 12 h for this

cluster (indicated with a black �). Figure 4A shows the curve difference

score table for all of the clusters in the case study experiment.

2.5 Timepoint selection with MOO

By clustering all of the genes based on their expression patterns and

comparing the estimate and current DRC datasets, we are able to rank

all of the timepoints for one cluster using curve difference scores (Qi).

However, if the ranks for each timepoint are different in different clusters,

a cross-cluster ranking method is needed to rank timepoints for the entire

dataset. Instead of applying a sampling voting method (used in Singh

et al., 2005) which may be biased towards optimal timepoints in one or

few clusters, OTS applies a MOO model to rank optimal timepoints

which will most benefit all of (or the majority of) the clusters

(Algorithm 1, lines 13 and 14; Coello, 1999).

Mathematically, MOO computes a �-score (indicating optimality) for

each timepoint. First, �-dominance is determined for each timepoint pair

as follows: we say timepoint t1�-dominates timepoint t2 (denoted as

t1 �
�
t2) if Q1 is larger than Q2 in � clusters, where 1 � � � jCj: For

example, in Figure 4A, the Q-values for every cluster in the 12-h

column are larger than the Q-values for all 10 of the clusters in the 6-h

column, so the 12-h timepoint �-dominates the 6-h timepoint at � ¼ 10.

Second, the �-score of a timepoint i is defined as the number of other

timepoints that i �-dominates, according to:

�� scoreði, �Þ ¼ fi0ji 6¼ i0, i 2 TA, i�
�
i0g

����
����, ð3Þ

where i is a timepoint in TA and i0 is any other timepoint in TA:
Optimal timepoints are selected by ranking based on the �-score values

of the timepoints. Initially, � is set to the number of clusters (jCj), but if

two or more timepoints share the same �-score (such as 1.5, 8, 10 and 14h

in the first row of Fig. 4B) then they are compared at � ¼ jCj � 1 (where,

in the second row of Fig. 4B, timepoint 1.5 outranks the others to get a

second-place overall rank). If there remains a tie, then they are compared

at � ¼ jCj � 2, and the process is repeated until each timepoint is ranked.

Using the final ranked timepoint list, researchers are free to sample one or

more of the top-ranked timepoints in their biological experiment.

3 EXPERIMENTAL RESULTS

Three main experiments were used to evaluate the performance

of OTS, and the performance was compared with uniform

distribution and active learning timepoint selection (where ap-

plicable) (Singh et al., 2005). In the first experiment (which uses

the Arabidopsis datasets described in Section 3.1), only the first

and last timepoints from the current dataset were used as initial

input, with five additional optimal timepoints added

one-at-a-time, to simulate ‘iterative-online sampling’ on an ini-

tially very sparse dataset. This first experiment was re-ran three

times with different parameters to demonstrate the effectiveness

of OTS when using lower quality training datasets and different

gene selection methods. A second ‘iterative-online’ sampling ex-

periment was run with the yeast datasets (also described in

Section 3.1). For the third experiment (which also used the

yeast datasets), we start with five evenly distributed timepoints

(at 5, 30, 60, 90 and 120min), and then add two more timepoints

as a batch to ‘top-up’ the timepoints sampled, simulating the

situation of choosing extra timepoints after conducting initial

sampling determined by researcher’s knowledge/intuition.

As a comparison, Singh et al.’s active learning algorithm was

also used to choose optimal timepoints, using the same number

of clusters as OTS. Active learning requires at least five time-

points as initial input, so it was used for the top-up experiment,

but for the iterative-online experiments (which start with only

two timepoints) the first three selected timepoints were chosen

using a uniform distribution across the time series. Random

timepoint selection was also performed, where timepoints were

randomly selected within the time range of each experiment

250 times.

3.1 Datasets

OTS performance was tested on differential gene expression (fold

change) datasets from two different organisms. The first was

Arabidopsis, for which certain gene functions are well studied

but dense time-series differential gene expression datasets are

difficult to find. The current dataset used was from a

high-resolution (20 timepoints) coronatine-treatment RNA-seq

experiment. Coronatine is a toxin produced by Pseudomonas

syringae pv. tomato DC3000 and is a molecular mimic of the

jasmonate hormone which mediates wound response in

Arabidopsis (Thilmony et al., 2006). So, several different training

datasets utilizing coronatine (three timepoints), Pst. DC3000

(two timepoints; Thilmony et al., 2006 and three timepoints;

Kilian et al., 2007) and wounding treatments (six timepoints;

Kilian et al., 2007) were used in this study (Fig. 2A). For this

experiment, known jasmonate-responsive genes and circadian

clock genes were selected as target genes (since the circadian

clock influences jasmonic acid pathway activation; Goodspeed

et al., 2012), based on the GO-SLIM categories ‘response to

jasmonic acid synthesis’ (GO:0009753, 139 genes) and ‘circadian

rhythm’ (GO: 0007623, 76 genes), for a total of 195 genes

common to all the datasets.

The second organism tested was yeast. Here, a 25-timepoint

microarray dataset which used �-factor treatment to synchronize

cell cycles to the G1 phase was used as the current dataset

(Pramila et al., 2006). Three other �-factor treatment datasets

(25 and 12 timepoints; Pramila et al., 2006, and 17 timepoints;

Spellman et al., 1998), and one dataset in which temperature

changes also synchronized the cells to the G1 phase (12 time-

points; Cho et al., 1998) were used as training datasets

Fig. 4. (A) Curve difference scores (Q) for every timepoint and every

cluster and (B) �-score tables used to determine the optimal timepoint

for all the selected genes in the case study experiment. Lighter shading

indicates higher curve scores, higher �-scores and lower (better) ranks
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(Fig. 2B). All of the genes common to the datasets in the GO

category ‘mitosis’ (i.e. cell division; GO:0007067, 90 genes total;

Ashburner et al., 2000) were used.

In the Arabidopsis experiment, very large differential gene ex-

pression values were expected for jasmonic acid response, based

on the literature (Chung et al., 2008; Wierstra and Kloppstech,

2000), and very low levels of noise are expected in the RNA-seq

dataset (Marioni et al., 2008), so a threshold number (H) of 6

was used to preferentially capture these larger changes in expres-

sion. In contrast, for yeast experiments, a threshold number (H)

of 3 was used in order to reduce the high expected noise in the

datasets (Cooper and Shedden, 2003), by ignoring the small fluc-

tuations in differential gene expression measurements. The

Arabidopsis and yeast datasets were grouped into 10 and 8 clus-

ters, respectively.

For these organisms, suitable training datasets were readily

available; However, when there is not enough training data for

an organism of interest, datasets from closely related organisms

may be used, and homologous genes can be found in the target

organisms using sequence similarities (She et al., 2009). Another

potential approach for preparing training datasets is to utilize

time-alignment algorithms on the datasets obtained from similar

experiments. For example, cell-cycle patterns can be synchro-

nized by shifting and stretching the time axis to align the

time-series expression patterns of key cycling genes between data-

sets (Aach and Church, 2001). On the other hand, if there are

many training datasets, a pre-screening approach for selecting

appropriate training datasets is required. All these approaches

could be utilized as pre-processing steps, but the first two have

not been tested in this study in order to minimize the complexity

of our experimental approach, and the third approach is intro-

duced in Supplementary Section S3 and Figure S5.

3.2 Performance measurement

For performance evaluation, given the differential gene expres-

sion (fold change) data of a gene g in the current dataset, its

predicted differential gene expression values at every unsampled

timepoint were determined using linear interpolation. A measure

of error between these interpolated and the actual differential

gene expression values for all of the genes in G was derived,

such that larger errors result from measurements with (1) poor

agreement between the actual and predicted values and (2) large

actual differential expression. These errors are summed for all

genes and all timepoints and compared with the summed error at

the start of the experiment to calculate the ‘percentage sum error’

(Er) in the experiment:

Er ¼

P
g2G

PjTAj

i¼1

êig � ðê
i
g � eirg Þ

��� ���
P
g2G

PjTAj

i¼1

êig � ðê
i
g � ei0g Þ

��� ���
, ð4Þ

where r is the round of timepoint sampling, êig, e
ir
g and ei0g are the

actual differential gene expression value, the predicted differen-

tial gene expression value for a given round of sampling (r) and

the predicted differential gene expression value at the start of the

experiment, respectively, for gene g in the set of genes G at time-

point i (1 � i � jTAj). This equation is biased towards large

errors for false negatives as opposed to false positives; That is,

if we predict a small fold change for a gene which is actually

strongly differentially regulated (false negative), then we miss an

important biological event and the timepoint selection was poor.

However, in the opposite case, if we predict a large fold change

for gene which is not actually differentially regulated (false posi-

tive) and we choose to sample that timepoint, we may waste a

sample, but have not missed an important regulation event for

that gene.
Error plots after the addition of the first timepoint in

the iterative-online experiments and after the addition of

both of the timepoints in the top-up experiment are shown in

Figure 5A–C.

3.3 Performance analysis

In the Arabidopsis iterative-online experiment (Fig. 6A), the add-

ition of the first OTS timepoint (at 5 h) reduces the percentage

sum error by 50%, which is much better than the timepoint se-

lected by uniform distribution (12h, 32%). Figure 5A shows that

after the addition of this first timepoint, compared with OTS,

uniform distribution selection predicts that many genes are un-

changed or downregulated at timepoints where they are actually

strongly upregulated (circles near the bottom right of the plot, in

Fig. 5. Error plots showing the actual versus predicted fold change values

for every gene at every timepoint after the first round of timepoint add-

ition in each experiment. Each point on the plot represents one gene at

one timepoint available for sampling in the dataset. Black � marks rep-

resent gene expression values based on OTS-selected timepoints, and

hollow circles represent values based on uniform distribution/active

learning-selected timepoints. Grey shades indicate the value of

êig � ðê
i
g � eirg Þ for each region of the plot (i.e. poorly predicted fold

change values with high error are in darker shaded portions of the

plot; see Equation (4)). Plots are shown after the addition of one time-

point in (A) the iterative-online Arabidopsis experiment, (B) the

iterative-online yeast experiment and (C) after the addition of the two

timepoints in the top-up yeast experiment
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dark-shaded areas). The second timepoint added by OTS (at 2 h)

further reduced the error to 35% of the initial error, compared

with uniform distribution, which still has 66% of the initial error

and still misses many strong upregulation events (Supplementary

Fig. S2C). The early bias in the timepoint selection by OTS

(which sampled at 1, 2, 3, 5 and 12h) more effectively captures

the early peaks expression levels of coronatine-induced genes

(Chung et al., 2008) than even timepoint distribution (6, 12

and 18h) followed by active learning (0.5 and 20h; Supplemen-

tary Fig. S3A). This experiment demonstrates the effectiveness of

OTS across platforms, and when using sparsely sampled training

datasets with slightly different biological treatments.
In the iterative-online yeast experiment, OTS outperformed

uniformly distributed timepoint selection (Fig. 6B), reducing

the error by 35% after the addition of just one timepoint at

20min (compared with only 5% reduction at 60min in uniform

distribution). The error plot in Figure 5B shows that the stron-

gest differential regulation events are much more accurately

defined by the timepoint selection in OTS (as shown by an abun-

dance of even-timepoint spacing/active-learning circle marks in

high-error areas in the bottom left and bottom right of the plot).

After the addition of two timepoints selected by OTS (at 20 and

50min), the initial percentage sum error is reduced by 47%,

compared with just 14% reduction from uniform distribution-

selected timepoints (Fig. 6B and Supplementary Fig. S2F). At

the end of the experiment, the initial error is reduced by 56%

using OTS timepoints (20, 35, 40, 50 and 95min) compared with

51% using uniform distribution (30, 60, and 90min) and active
learning (25 and 95min) timepoints (Supplementary Fig. S3B).
Like in the Arabidopsis experiment, OTS outperforms active

learning at every number of timepoints tested, and there is also
a bias towards early timepoints, probably due to stronger and
more co-ordinated cyclic gene responses immediately after syn-

chronization (Cho et al., 1998; Spellman et al., 1998), and be-
cause many yeast cell cycle genes peak in late G1 (at �20min),
the point at which the cell needs to ‘decide’ whether to divide or

to continue to grow (Rodriguez-Sanchez et al., 2011). Additional
potential biological insights provided by using OTS in both the
Arabidopsis and yeast experiments are outlined in Supplementary

Figure S4 and Section S2 (Chen et al., 1999; Fernandez-Calvo
et al., 2011; Martinez et al., 2006; Xie et al., 1998).
OTS also selects early timepoints in the top-up yeast experi-

ment (10 and 20min), reducing the error by 26%. In this experi-

ment, active learning adds timepoints at 25 and 95min, and only
reduces the error by 14%. The error plot in Figure 5C shows that
the strongest upregulation events (on the right of the plot) are

more accurately defined by the early timepoint selection in OTS,
resulting in much stronger performance. Error plots for the start
of each of the experiments and after the second round of the

iterative-online experiments are shown in Supplementary Figure
S2. These yeast experiments demonstrate strong performance for
OTS despite a great deal of noise, because cell cycles are only

weakly reproducible (even between replicates), �-factor syn-
chronization and temperature treatments may elicit stress-related
gene responses (Cooper and Shedden, 2003), and a very diverse

set of genes is responsible for mitosis, which was the gene group
selected here (Cho et al., 1998).
The robustness of OTS was tested using the Arabidopsis ex-

periment setup (1) against different training sets and (2) against
different predefined genes of interest. First, the coronatine treat-
ment microarray training dataset (in which the laboratory con-

ditions were exactly the same as in the current experiment,
making it the most closely matched dataset) was removed, to
test whether OTS performance would be significantly affected.

The results in Figure 6C show that the removal of this
best-matched dataset only slightly reduced performance (2.6%
average decrease for all of the timepoints selected), showing that

even with only the other three training datasets, which use similar
but not identical biological treatments (i.e. wounding and
DC3000 treatments), OTS is still effective.

Next, a six-timepoint cold-treatment dataset (Kilian et al.,
2007) was added to the four training datasets, to test whether
adding poorly matched training data would negatively affect

OTS performance. Cold treatment is appropriate for this test,
as it functions through the DREB1/CBF transcriptional stress–
response module, which is biologically and experimentally unre-

lated to the JAZ-MYC/MYB transcriptional modules activated
by the coronatine/wounding response (Shinozaki et al., 2007).
Again here, there was only a very slight reduction in performance

with the inclusion of this poorly matched dataset (2.9% average
decrease for all the timepoints selected), demonstrating the ro-
bustness of OTS against using poor training datasets, due to the

assignment of relatively low weight values by the NNLS weight-
ing step. A third training dataset test experiment was run, in
which the well-matched coronatine treatment microarray experi-

ment was removed and the poorly matched cold experiment was

Fig. 6. Percentage sum error values (performance measurements) for

iterative-online timepoint-selection experiments. For the Arabidopsis (A)

and yeast (B) experiments, results from OTS (black line), uniform distri-

bution/active learning (dashed/solid grey lines) and random selection

(dashed line) are shown. In (C), the results of changing training datasets

in the Arabidopsis experiment by removing the best-matched dataset,

adding a poorly matched dataset and performing both of these changes

together are shown. In (D), the results of choosing a gene set using an

unsupervised approach in the Arabidopsis experiment are shown
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added to the training datasets. Here, there was only a 2.0% de-
crease in performance for the first timepoint, but the later time-
points had a slightly45% decrease in performance (Fig. 6C).

The results of an unsupervised gene selection method are
shown in Figure 6D. Rather than using the knowledge-based
gene ontology gene selection approach used in the other experi-

ments, the top 100 genes with the highest fold change values
across all four training datasets were selected. Here, three
genes were removed from the analysis due to zero-control

values in the current RNA-seq dataset (which result in undefined
fold change values), and 8 clusters were used instead of 10 due to
the smaller gene set size. This 97-gene set had little overlap (12

genes) with the knowledge-based gene selection set. Figure 6D
shows that the performance of the two different gene selection
strategies is similar, suggesting that an unsupervised gene selec-

tion approach could be used to fully automate OTS when
knowledge-based gene categorizations are not applicable.
In summary, these tests indicate that OTS is able to learn

sampling rates from suboptimal training data, its performance
is robust against using irrelevant training data and it is compat-

ible with automatic gene selection methods.

4 CONCLUSION

We have demonstrated that OTS can out-perform existing algo-
rithms at finding optimal timepoints for defining true differential
gene expression patterns for large groups of target genes. We

have shown that this algorithm is robust to the use of sparsely
sampled, poorly matched and cross-platform data, as well as to

noise in the datasets. Because it utilizes existing data effectively,
OTS can be applied on datasets starting with as few as two
timepoints, in contrast to the active learning algorithm which

requires a minimum of five timepoints as input (Singh et al.,
2005).
As high-throughput gene expression measurement technolo-

gies continue to be developed, high-resolution sampling may
eventually become cost-effective. For example, ‘nanostrings’
are a recently developed medium-throughput gene expression

measurement technology capable of measuring up to 800 genes
at once at a relatively low cost (Brumbaugh et al., 2012).
However, using this technology, not all of the genes in the or-

ganism can currently be sampled, and the gene list needs to be
pre-defined. Since OTS simply uses gene differential expression
values as input, it would be possible and very advantageous to

use the results from nanostring or real-time PCR experiments as
training data for OTS, to select optimal timepoints. For

RNA-seq technology, highly multiplex sampling is becoming in-
creasingly accurate, allowing for denser timepoint sampling with
a moderate increase in cost (Islam et al., 2011). As more

time-series datasets are produced due to these advances in tech-
nology, more and better training datasets for OTS will be pro-
duced, and the demand for better knowledge-based timepoint

selection methods will increase.
In this article, OTS was tested only using differential gene

expression values, but it could also be extended to use other

types of data, including raw transcript number counts, relative
protein quantities or any type of measurement that can be
sampled in an online fashion. Overall, OTS can be used to sig-

nificantly improve the results from biological experiments by

allowing researchers to optimize the distribution of timepoints

when there is a limit on the number of samples that can be

measured across a time-series dataset.
The estimation power of extrapolation of time-series gene ex-

pression data is much less than for interpolation, particularly for

relatively simple linear extrapolation methods (Haye et al., 2012).

For this reason, OTS is currently limited to selecting timepoints

within the time range available in training datasets. Eventually,

more sophisticated extrapolation methods such as the non-linear

differential equation models outlined in Haye et al. (2012) may

be integrated to improve the predictive power of OTS.
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