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Abstract. The widespread distribution of insects over
many ecological niches is a testimony to their evolu-
tionary success. The colonization of environments at
high latitudes or altitudes required the evolution of
biochemical strategies that reduced the impact of cold
or freezing stress. This review focuses on our current
interests in some of the genes and proteins involved in
low temperature survival in insects. Although the
most widespread form of protection is the synthesis of
low molecular weight polyol cryoprotectants, proteins

with intrinsic protective properties, such as the
thermal hysteresis or antifreeze proteins are also
important. These have been cloned and characterized
in certain moths and beetles. Molecular techniques
allowing the isolation of genes differentially regulated
by low temperatures have revealed that heat shock
proteins, cold stress proteins, membrane protectants,
as well as ice nucleating proteins and other less well
characterized proteins likely also play a role in cold
hardiness.
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Introduction

Temperature is one of the most important abiotic
factors in determining the state of activity and geo-
graphic distribution of organisms. Outside the lowland
tropics and in temperate waters, temperature can
decrease to below zero degrees on both a seasonal and
occasional basis. Such low temperatures are funda-
mental determinants of the life history of many
ectothermic animals, of which insects form the over-
whelmingly majority. To escape or alleviate low
temperatures, insects have evolved a battery of

physiological and behavioral strategies. For some
species, behavior changes play a key role, such as the
long distance migratory flights of monarch butterflies
[1] that allow them to escape winter altogether. Other
insects escape to local shelters, for instance to
thermally buffered microclimates that exist under
the snow cover or within tree bark crevices. However
spectacular, long distance migrations are rare in
insects, as is respite in warm local shelters. Thus,
many species must still bear some of the brunt of low
temperature exposure. A majority of insects that are
subjected to seasonal temperatures that approach or
exceed the freezing point of water have evolved a set
of powerful physiological and molecular adaptations,
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collectively placed under the umbrella of “cold hardi-
ness”, to counter the effects of such stress.
Classification of insect cold hardiness has often been
reduced to a dichotomy, pitting species that are
“freeze intolerant”, those insects that do not tolerate
the freezing of body fluids, against “freeze tolerant”
insects which survive after a percentage of their
extracellular fluids freeze. This simple organization,
although prevalent in the literature, is not wholly
satisfying since it rarely takes into account the
potential additive injury resulting from cold shock.
This may occur whether low temperatures are sus-
tained or brief [2]. As a consequence, it has been
suggested that insects be classified into five groups
from the most to the least freeze hardy [3]. More
recently, it has become apparent that insect cold
hardiness may be better understood in light of the
damage or mortality factors that are cold-induced, as
well as those associated with freezing. In this regard,
three main types of cold-induced injury have been
recognized by Nedved and have been organized into a
binary classification scheme that covers all currently
known cold survival strategies: cold shock, the freez-
ing of body liquids and cumulative freezing injury
constitute, singly or in combination, the three major
cold mortality factors affecting insects [4] (Table 1).
Eight possible classes of cold hardiness strategies
ranging from no adaptation (typical of tropical
insects) to adaptation to all three factors (in freeze
tolerant species from regions where low temperatures
are common) derive from this classification system
[4]. These have been designated by whimsical names, a
collective known as Snow White and the Seven
Dwarfs [4]. In practice, however, only five major
cold hardiness classes are known. At one extreme, the
most low temperature-vulnerable of the group, which
Nedved has dubbed �Sneezy�, comprise the freeze,
cold shock and chilling-susceptible species. These are

typified by tropical insects such as the housefly, Musca
domestica, or the fruit fly, Drosophila melanogaster,
which show extreme sensitivity to temperatures that
are below those conducive to normal metabolism [5,
6]. Insects of this group can die after even brief
exposure to 0oC, not having evolved specialized
cryoprotectants to sustain the integrity and/or func-
tion of tissues, cells and macromolecules. However, as
recent work in Drosophila has demonstrated, even
tropical insects are not completely devoid of bio-
chemical adaptive responses against brief episodes of
cold [7]. Adaptations to low temperatures in this
group of insects are reminiscent of stress adaptations
and in fact may have evolved from these basic stress
responses [8, 9].
At the other extreme, the most resistant (�Happy�)
insects are freeze tolerant species such as the arctic
beetle, Pytho deplanatus [10], and the alpine cock-
roach, Celatoblatta quinquemaculata [11]. Insects
from this group have attracted significant attention
due to the numerous biochemical layers of protection
they have evolved against the three threats of freezing,
cold shock and cumulative chill injury. Similarly,
insects which show cold shock and freeze injury
tolerance but cannot allow their body fluids to freeze
(the �Doc� class), secrete powerful antifreeze proteins
(AFPs) to limit ice propagation to microscopic
dimensions. Rather than being an exhaustive review
of all such adaptations, this paper summarizes our
current interests in cold shock responses, the synthesis
of cryoprotective proteins and low molecular weight
compounds by insects and their integration into the
overwintering strategies of a few “model insects”.

Tabl 1. Cold-related mortality factors and associated cryoprotective strategies in insects. S: sensitive, R: resistant. Adapted from [4].

Cold-related mortality factor Nedved�s
(2000)
classification

Cold hardiness
classification

Typical cryoprotectant Type of insect Reference

Cold
shock

Freezing Cumulative
chill injury

S S S “Sneezy”
Chill and freeze-
sensitive; opportunistic
survival

Cold shock proteins(?),
cold responsive genes (?) Musca domestica [6]

R S S “Snow
White”

Chill tolerant, freeze
sensitive

Cold shock proteins, cold
responsive genes Pyrrhocoris apterus [67]

R S R “Doc” Chill tolerant, freeze
sensitive

Polyols, antifreeze
proteins

Choristoneura
fumiferana, Epiblema
scudderiana

[99, 74]

R R S “Grumpy” Freeze tolerant Polyols, ice nucleators (?) Eurosta solidaginis [184]

R R R “Happy” Freeze tolerant Polyols, ice-nucleators
(?) Pytho deplanatus [10]
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Cold shock and the chill response in insects

Seasonality imposes on insects the ability to become
hardy for long periods of time, while at the same time
being able to respond to quick dips in temperatures.
There is evidence for both a rapid cold-hardening
process as well as a slower hardening response. The
slow response can take days, weeks, or even months
and is often linked to the entry into a state of
quiescence or diapause [12]. In the context of
diapause, hardening is likely to be triggered by the
same developmental and environmental inducing
cues. The response to cold shock, however, is much
better studied. A series of metabolic changes, called
the rapid cold-hardening process, allows low temper-
ature-susceptible insects to increase their overall cold
tolerance. Cold hardening is induced by a brief
exposure to moderately low temperatures [13] and
results in a reduced susceptibility to the damaging
effects of what would otherwise be a lethally low
temperature. Thus, it is conceptually similar to rapid
heat hardening where a brief exposure to moderately
high temperatures induces heat shock proteins which
then protect physiological responses against subse-
quent lethally high temperatures [14, 15]. As little as a
10 min exposure to 08C allows the flesh fly, Sarcoph-
aga crassipalpis to survive a temperature of -108C,
which would be lethal without such prior cold
exposure [16].
One of the hallmarks of the cold shock response and
the ensuing cold hardening is the synthesis of small
organic molecules such as polyhydric alcohols and
sugars. Studies with two species of flesh fly including S.
crassipalpis, as well as the elm leaf beetle, Xanthoga-
leruca luteola, and the milkweed bug, Oncopeltus
fasciatus, showed that rapid cold hardening is corre-
lated with accumulation of the cryoprotectant glycerol
which can shield membranes from temperature-in-
duced phase transitions [13]. In S. crassipalpis it also
reduces water loss following cold hardening [17].
Glycerol is by far the most common polyhydric
alcohol encountered in cold hardy insects, but other
low- to moderately- concentrated polyols such as
sorbitol, mannitol, erythritol and myoinositol have
also been reported in various species [18 – 21]. A
metabolomic study in S. crassipalpis showed that
sorbitol levels increased during rapid cold hardening
[9]. While the lower abundance polyols have not been
characterized as well as glycerol and sorbitol, their
structural relatedness suggests they likely contribute
to low temperature survival in the same manner [22,
23].
Trehalose is a disaccharide of two alpha-linked
glucose units which is mainly used as an energy source
for insect flight [24] but can additionally protect

against cold shock. Indeed, greater chill tolerance was
correlated with an increase in glucose and trehalose
levels in some species while glycerol concentrations
remained unchanged [7]. Trehalose synthesis, along
with glycerol synthesis, appears to be an ancient
response to low temperatures, and is shared among
insects, nematodes and yeasts [25 – 28]. This funda-
mental response is probably linked to the capacity of
this non-reducing sugar to replace water molecules,
and therefore compensate for the loss of water that
frequently occurs during cold shock [29].
Sugars and polyols alone do not ensure cold harden-
ing. As cues announce the need to adapt to low
temperatures, some organisms produce specific iso-
forms of certain cellular proteins to deal with cold
stress conditions [30, 31]. For instance, S. crassipalpis
pupae upregulate specific heat shock protein isoforms
during diapause, including Hsp70 and Hsp23 [32, 33].
Evidence for the roles of these proteins in low
temperature survival comes from RNAi �knockdown�
experiments that reduce the ability of diapausing
pupae to survive cold, but do not influence entry into
diapause or its duration [34]. Both Hsp23 and Hsp70
are responsive to cold and heat stress in non-diapaus-
ing flesh flies, pointing to their protective roles against
�general stress� under normal development. Interest-
ingly, the heat shock cognate 70 (Hsc70) from S.
crassipalpis is only responsive to cold shock, and not
heat shock. Further complicating an explanation for
the role of the latter in cold hardiness, it is not
upregulated during diapause [33]. In D. melanogaster,
the heat shock transcription factor 1 (dHSF) can
generate three alternative splicing isoforms, dHSFb,
dHSFc and dHSFd, with dHSFd responsive to cold
stress [35]. However, no research has been done on
the importance of this isoform in long-term (longer
than 24 h) cold acclimation [36].

A case study of a chill and freeze-sensitive species,
Drosophila melanogaster

Since the common fruit fly probably remains the insect
of choice for genetic and molecular analysis, it is of
interest to examine the low temperature susceptibil-
ities of this chill-susceptible species in detail. D.
melanogaster originally inhabited the tropical regions
of the old world, but is now found in almost all
temperate regions and on all continents except
Antarctica [37]. Humans presumably played an
unwitting role in its spread [38]. Temperature and
water are two major confining factors, since these flies
require moist environments and cannot survive in cold
climates [37].
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D. melanogaster matures through a complete meta-
morphosis, with four distinct stages in its life: egg,
larva, pupa and adult. At 218C, the life cycle takes two
weeks. Adults are sensitive to low temperatures, and
do not survive exposure to –58C, even though this
temperature is much higher than its supercooling
point of –208C. Again, this suggests that cold shock
causes lethal injury that is not associated with freezing.
For example, no larvae survived 2 h of exposure to
–58C, and exposure of pupae to –88C was also lethal,
but pre-chilling treatments at a higher temperature
increased survival of larvae, pupae, and adults at their
respective lethal temperatures [5].
D. melanogaster does not have antifreeze proteins
[39], little is known about cryoprotectant production,
and this insect does not spin a cocoon. How do these
flies survive when they are exposed to low temper-
atures? This species appears to use several adapta-
tions to cope with temperature stress, including
dispersal to warmer climates. Also, some D. mela-
nogaster populations have been reported to over-
winter under snow [40] where low temperatures would
be moderated. Further diminishing the impact of the
cold, they also make changes in their phospholipid
profiles that may help maintain membrane fluidity or
homeoviscosity [41]. Concurrently, they also increase
the production of glycogen, triacylglycerols and pro-
line [42]. Increases in these energy reserves are
important in order to fuel cold-hardening mechanisms
to cope with the fluctuations of low temperatures
causing cold-shock or chilling injury. Cellular mem-
brane structure is concomitantly stabilized by low
molecular protectants such as proline, which could
serve dual functions in addition to their roles as energy
sources. Dipterans show a certain plasticity in their
overwintering strategies, as some species can enter a
state of pupal diapause [43]. Even a few D. mela-
nogaster lines have been reported to show quiescence
[44] or reproductive diapause [45]. It is therefore not
surprising that the molecular adaptations put in place
during cold hardiness are equally varied in this
successful insect order.
Like other chill-sensitive insects, D. melanogaster can
use a rapid cold-hardening process. This increases
their overall cold tolerance, presumably induced by
changes in temperature that can occur during diurnal
thermal cycles. Induction of rapid cold hardening has
been shown to be related to the cooling rate: D.
melanogaster cooled at rates similar to those found
under natural conditions (0.05 and 0.18C/min) showed
higher survival after one hour of exposure to –88C
than did flies that were directly transferred to these
temperatures in the laboratory, or those flies cooled at
a faster rate (0.5 or 1.08C /min) [46]. As might be
expected, limited low temperature protection was also

related to the final temperature, with flies cooled to
08C showing more cold tolerance than those cooled to
118C.
Multiple genes appear to be important for rapid cold
hardening or for recovery from chill coma. When D.
melanogaster adults were treated for 2 h at 08C and
were allowed to recover only sufficiently so that
accumulated transcripts could come off the ribosomes,
there was increased abundance of some messages
corresponding to a cluster of stress protein genes,
including some heat shock proteins [47] (Fig. 1). These
chaperones facilitate refolding, presumably of pro-
teins that are denatured by cold or oxygen stress.
Remarkably, some of the transcripts that were iden-
tified in this study have also been implicated in
mammalian hibernation, including a locus involved in
the sleep response. More than one-third encoded
membrane proteins. Also, the Frost (Fst) gene product
is likely a mucin [47], which may protect membranes.
Previously, elevated levels of Fst transcripts were seen
after low temperature exposure and recovery [48].
Supporting these findings, reduced levels of certain
transcripts suggested that cold hardening flies were
exposed to some oxidative stress even in the brief
period at 08C [47], and that this stress is likely
associated with chilling injury [49 – 51]. Further,
there was evidence of apoptosis in cold shock flies
that was ameliorated by eliciting a rapid cold harden-
ing response [52].
In other experiments, a subset of the transcripts
associated with the acquisition of cold hardening was
also reported after a brief recovery from moderate
cold stress [53]. Quantitative trait loci mapping has
assigned a portion of the chill recovery phenotype to
the second chromosome [54], and selection of strains
resistant to low temperature stress showed altered
transcript abundance in a number of different genes in
one study (unpublished observations), but little differ-
ence in another [55]. Clearly, even though D. mela-
nogaster, as a chill sensitive insect, shows high mortal-
ity to low temperatures, the understanding of its
modest adaptations are complex and not fully under-
stood despite the ready availability of molecular tools.

Cold shock tolerance and freeze sensitivity

The freezing point of water, the equilibrium temper-
ature at which ice and water co-exist under one
atmosphere pressure, is 08C [56]. However, water
usually freezes at lower temperatures, especially in
small volumes [57 – 59] or when containing dissolved
solutes or other organic molecules. Whether super-
cooled or not, once ice crystallization is initiated, the
growth of ice crystals can lead to significant damage to
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cells and tissues. This is partially due to the exclusion
of solutes into the unfrozen fraction as ice crystals
grow, changing the osmotic environment. For most
organisms, freezing of water occurs first on the outside
of cells [60], resulting in an osmotic gradient between
the unfrozen extracellular fraction and the interior of
the cell. The osmotic disequilibrium across the mem-
brane then forces the water to leave the cell, dehy-
drating it and increasing the concentration of cyto-
plasmic components such as small (e.g. ions, sugars)
and large (e.g. proteins) molecules. The increase in
concentration of these solutes, in turn, increases the
viscosity of cellular fluids, affects enzyme function and
changes the cellular pH [61, 62], all of which can be
highly damaging to cells and tissues. Also, loss of water
makes cells shrink, resulting in additional stress on the
membranes [63], and reducing cell volumes until they
are unrecoverable, dramatically affecting survival [64,
65]. This damage is in addition to any mechanical
damage to cell membranes caused by ice crystal
growth, again resulting in ionic leaking or other
imbalance.
Membrane and osmotic stress must be avoided in
order for freeze susceptible, but cold shock tolerant
insects to survive, and thus it is important that freezing
does not take place. Indeed, this appears to be the

most common cold resistance strategy of arthropods
[66]. A portion of the species in this group that are also
susceptible to chronic chill injury, dubbed �Snow
White�, not only makes up a huge class but is also
climatically widespread [4] (Table 1). These insects are
typified by the red firebug, Pyrrhocoris apterus [67],
which survives overwintering temperatures of�138C.
Coincident with autumn and diapause, these insects
increase their supercooling capacity and accumulate
low levels of polyols such as ribitol, sorbitol, arabinitol
and mannitol, but at levels that are insufficient to
function as typical cryoprotectants [68]. Actually, the
chronic chill injury that characterizes these insects
may be due to problems in maintaining ion gradients,
since prolonged exposure at 08C leads to K+ imbal-
ance [18]. In the field, periodic warm shifts likely
restore membrane gradients, and polyols may help to
protect electrochemical gradients under these condi-
tions [18]. Proteomic analysis in other species in this
class has identified several proteins that increase in
abundance after similar temperature shifts [69]. In
addition, various genes from a number of insects have
been implicated in resistance to chilling stress [70 –
72], but their roles are not yet established.
Freeze intolerant insects also include a sister class
(�Doc�) that survives chronic chilling [4] (Table 1).
This class of insects is typified by the goldenrod gall
moth, Epiblema scudderiana, which might be more
cold hardy than those grouped in the previously
described class due to higher glycerol production.
Sorbitol is also present and it likely acts both as a
cryoprotectant and to maintain diapause [73]. Tem-
perature-regulated enzymes are crucial for the syn-
thesis of glycerol levels that approach 2 M, and these
enzymes utilize large glycogen stores that are accu-
mulated prior to overwintering [74]. Maximum rates
of glycerol synthesis occur at relatively high subzero
temperatures (0oC to -5oC) and the triggering event
can be traced to the activation of a cAMP-dependent
protein kinase A (PKA), following a rise in intra-
cellular cAMP [75]. In a cascade fashion, the catalytic
subunit of PKA (PKAc) regulates two enzymes
having opposite roles in the phosphorylation of
glycogen phosphorylase, the enzyme that converts
glycogen into glucose. PKA thus regulates a phos-
phorylase kinase as well as phosphorylase phospha-
tase (also called protein phosphatase 1) [76]. At the
same time, PKA activity may also inhibit pyruvate
kinase, funneling carbon flow away from glycolysis
and into glycerol production [75]. The activity of
antioxidative enzymes in Epiblema is also increased
during overwintering; enzymes such as superoxide
dismutase, catalase, and gluthathione reductase
amongst others, maintain reactive oxygen species at
low levels during overwintering [77]. This suggests

Figure 1. D. melanogaster genes showing increased transcript
abundance after 2 h at 08C (see text), as determined by microarray
analysis [47]. The �stress� group includes Hsp83, Hsp26, Hsp23,
ubiquitin-63E and Frost. The �membrane� group includes many
putative membrane proteins, a G-protein, ABC transporters, a
glutamate receptor, a GTP-binding membrane protein, a Na+/H+

transport protein, and a cuticle membrane. The �mitochondrial and
energy� group includes a mitochondrial transporter, an electron
transporter (mtacp1), an enoyl CoA hydratase, a glycoside hydro-
lase and a b-galactosidase involved in cell death. The �signaling and
expression� group includes a nervous system splicing factor (sl6),
ATP binding (Madm), a transcription coactivator (nervous system;
mbf1) and a protein binding expression protein. The �other/
unknown� group includes ATP/GTP binding proteins, and an
odorant protein involved in behavioral responses. The analysis was
updated to include new biological processes or functions available
on FlyBase (http://FlyBase.net) and BioGrid (http://www.thebiog-
rid.org).

Cell. Mol. Life Sci. Review Article 5



that damaging free radicals can be produced even
though general metabolism has been minimized.
Choristoneura fumiferana (Cf), another insect in the
same �Doc� class, remains unfrozen even at temper-
atures which can dip to �308C or lower in the boreal
forest [78]. The first instar larvae spin cocoons, molt to
second instars in the early fall and then enter a
diapause stage for overwintering. They survive parti-
ally aided by the accumulation of glucose, trehalose,
and glycerol [79]. Dehydration also indirectly helps
increase the concentration of cryoprotectants. How-
ever, even such high concentrations of cryoprotec-
tants do not sufficiently depress the freezing point if
ice nucleators are present [80, 81]. In consequence, C.
fumiferana second instars eliminate materials from
their midguts that could act as ice nucleators, resulting
in a lowering of the supercooling point [79]. Thus
these insects can avoid freezing by lowering the
freezing point of the body fluids in order to supercool.
They further protect themselves by avoiding the
initiation of ice growth by sealing themselves in
hibernacula, and through the synthesis of AFPs.
The fire colored beetle, Dendroides canadensis, is also
in the same freeze intolerant class. It produces polyols
(principally glycerol) and AFPs [82, 83]. Curiously,
polyols have not been reported in Tenebrio molitor, a
related beetle, which overwinters in a larval quiescent
state and not a true diapause. The ability of this latter
beetle to supercool to low temperatures without
glycerol [84] may be due to a combination of its
ability to desiccate, perhaps aided by specific proteins
such as the desiccation stress protein (dsp28) [85], as
well as its highly active AFP.
Both these classes of freeze intolerant insects, in
contrast to more low temperature-susceptible insects,
are classified as resistant to cold shock (Fig. 1). Low
temperatures induce stress proteins including the
chaperone Hsp70 for protection [61, 77, 86– 88]. The
silk moth, Bombyx mori, produces Samuri (Japanese
for cold) transcripts in response to cold shock, and the
corresponding protein may also be involved in the
long-term chilling response during diapause [71].

Antifreeze proteins

AFPs have been identified in numerous terrestrial
arthropods including spiders [89 – 91], mites [92, 93],
centipedes [94, 95], the arctic lepidopteran, Embry-
onopsis halticella [96], various beetles [91] including
the longhorn beetle, Rhagium inquisitor [97], moths
[96, 98, 99], the pine needle gall midge, Thecodiplosis
japonensis [100], the milkweed bug, Oncopeltus
fasciatus [101], and more than 50 other species of
insects [92, 102, 103]. These proteins are of particular

interest because of their unique properties. They
depress the freezing point of the hemolymph in the
presence of ice or ice nucleators by adsorbing to ice
and thereby inhibiting further ice growth [104]. AFPs
lower the non-equilibrium freezing point while not
significantly affecting the melting point, a phenomen-
on termed thermal hysteresis [105]. As a result, AFPs
are also called thermal hysteresis proteins (THPs). Ice
crystal surface recognition and van der Waals inter-
actions [106, 107], as well as hydrophobic groups,
complementarity of fit and optimal orientation [108 –
111] seem to be features of the association of different
AFPs to different ice crystal planes. Some AFPs even
appear to change their conformation when adsorbed
to ice [112, 113].
One of the first reports of what we now know as
thermal hysteresis (TH) or AFP activity in any
organism came from observations in T. molitor (Tm)
in the mid and late 1960s [114, 115]. TmAFP cDNAs
encode a group of small proteins (8.4– 13 kDa),
possessing very high TH activity, with some isoforms
having up to 100 times the specific activity of fish
AFPs [116, 117]. TmAFPs are rich in Cys and Thr
residues, which together represent ~40 % of the amino
acids [118]. They are composed of varying numbers of
tandem 12-residue repeats: (Thr-Cys-Thr-X-Ser-X-X-
Cys-X-X-Ala-X, where X can be any amino acid), a
unique AFP sequence save for D. canadensis. A model
structure was obtained using X-ray crystallographic
analysis [119], showing that the protein folds as a
right-handed b-helix, with each repeat representing a
single turn of the helix, stabilized by intra-turn
disulfide bonds (Fig. 2). The first three residues of
each repeat, Thr-Cys-Thr, together form a flat surface
with the �Thr buttons� precisely aligned and acting as
the ice-binding site [119, 120]. The different isoforms,
some of which are glycosylated, are encoded by a
moderately large gene family with 30 – 50 unique AFP
loci [117]. Approximately half of these have been at
least partially sequenced [117, 122].
The related beetle, D. canadensis (Dc), has an AFP
that is sufficiently similar to TmAFP that a common
evolutionary origin may be inferred [122]. TH in this
insect is amongst the highest known with enhancer
proteins and glycerol perhaps helping to explain this
extraordinary activity [102]. DcAFP shares 40 – 66 %
amino acid identity with TmAFP and the 83 – 84
residues are divided into 12 to 13 amino acid repeats
[123]. Although the structure of DcAFP has not been
reported, the repeats contain the Thr-Cys-Thr motif,
and the two Cys residues within each repeat form a
disulfide bond with each other [124]. Thus, it is very
likely that DcAFP and TmAFP share a similar three-
dimensional structure. DcAFPs are also encoded by a
multigene family and similarly, many cDNAs have
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been isolated and sequenced [125]. Analysis of the
coding regions suggests that there is a bias in codon
usage in both beetle AFPs; Tm and DcAFPs show a
low GC content at the third wobble position [122]. It is
possible that this bias is an adaptation to facilitate
transcription or translation at low temperatures. In
this regard, it is of interest to note that C. fumiferana
AFP, too, shows a lower GC content than other coding
regions in its genome. It is not known if codon bias is a
hallmark of transcripts utilized at low temperatures,
but one can hope that other researchers will examine
this question in the future.
The C. fumiferana AFP (CfAFP) has an obvious
independent evolutionary origin from the beetle
AFPs, but shares a remarkable number of similarities
with TmAFP and DcAFP, so much so that these genes
are a good example of convergent evolution [118].
Hints of the structure of CfAFP were first obtained by
sequence comparisons [99]. Alignment of �conserved�
amino acids found in the translated sequence revealed
occasionally imperfect �Thr-X-Thr� motifs spaced
approximately 15 residues apart. Substitution muta-
genesis of Thr residues to Leu in individual Thr-X-Thr
motifs resulted in up to 80 – 90 % loss of TH activity
[126]. It is thought that these �Thr buttons� may play a
central role in ice-adsorption [99], similar to Thr
residues in certain fish AFPs [107, 127, 128]. This
hypothesis was strengthened when a model of the
CfAFP structure was obtained using NMR spectro-
scopy and subsequently by X-ray crystallography; the
protein is folded into a left-handed b-helix, with a
triangular cross section (Fig. 2) and ~15 residues to
each loop [126,110] with a flat ice adsorption face.
The Thr-X-Thr motifs and the disulfide bonds are
critical to ice interaction and the overall structure
[126], with a longer isoform having increased TH
activity [110]. C. fumiferana AFPs probably appeared
prior to the divergence of the Choristoneura sister
species approximately 4 million years ago, coincident
with the Pleistocene ice age [129] and at a time of
changes in the coniferous forest cover [130]. The
longer forms with the extra 30-residue repeat forming
two more loops likely originated from a duplication
and addition event prior to their divergence [129].
Selective pressure for more active isoforms would
have retained the insertion and also probably resulted
in gene duplication events to increase gene copy
number. A similar correlation between increased
activity and the number of loops in the isoform has
also been observed in beetle AFPs [120].
The full repertoire of AFPs encoded in the spruce
budworm genome was estimated to be around 17
genes, using Southern blotting [131]. Over the last
decade, genomic and cDNA cloning efforts [131, 132]
as well as peptide sequencing from purified antifreeze

proteins [99] have allowed the characterization of
roughly half that number at the sequence level. In
order to further explore AFP isoform diversity, a
recently generated expressed sequence tag (EST)
library constructed from second instar spruce bud-
worm RNAs was mined (unpublished). Out of 5000
sequenced ESTs, three were deemed homologous
(Table 2). One EST (CFDP_037_C23) was identical to
the translated sequence of a previously characterized
short isoform. The two other ESTs, however, encoded
novel isoforms. One of these (CFDP_037_P04) was
closely related to a genomic sequence encoding a short
isoform, but another, a long isoform
(CFDP_0312_A17), had only 65 % amino acid iden-
tity to the closest known sequence. When conceptually
translated, all three ESTs showed �Thr buttons� (Table
3), but divergence from the consensus was observed in
a few motifs. This included Val-X-Thr, Thr-X-Ala and
Thr-X-Lys. Whether these isoforms would show TH
activity if expressed in vitro remains to be determined.
In the snow flea, Hypogastrura harveyi, an arthropod,
two related glycine-rich AFP isoforms of 6.5 and 15.7
kDa have been reported [133]. Similar to the insect
AFPs, the longer isoform is more active, with TH
values similar to those reported for DcAFP. A model
[134] of the short isoform shows Gly-gly-X motifs (in
which about half of the second residues are Gly).

Figure 2. Models of the crystal structures of antifreeze proteins. On
the left, the 12–amino acid repeats containing the consensus Thr-
Cys-Thr motifs of T. molitor AFP are folded into a bread loaf shape
formed by a right-handed b-helix, stabilized by intra-loop disulfide
bonds [119]. In the middle, the C. fumiferana AFP, with 15-amino
acid repeats containing consensus Thr-X-Thr motifs (where X can
be one of many amino acids), is folded into a left-handed b-helix
with a triangular cross section, stabilized by inter-loop disulfide
bonds and side chain stacking [110]. On the right, the H. harveyi
AFP has a repetitive Gly-gly-X motif (where about half the second
residues are Gly) that fold into six alternating parallel and
antiparallel helical strands that are stabilized by disulfide and
hydrogen bonds [135]. All three models generate a rather flat
surface on one side, which is believed to be involved in ice
adsorption.
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These repetitive motifs make helical turns that are
regularly disrupted by the presence of four prolines
(and one serine), so that the protein is folded into
alternating parallel and antiparallel helical strands
with the Gly residues facing the interior of the folded
AFP. Hydrogen and disulfide bonds stabilize this
structure which has been likened to a polyproline type
II helix [134]. The attractiveness of the model is that
the even numbered helical turns together form a
rather flat hydrophobic surface, thought to be the ice-
adsorption face, but there is as yet, no experimental
evidence for this. Recently, the crystal structure for

this AFP was solved by another group, substantiating
the model [135] (Fig. 2).
AFP transcripts were present in snow fleas found in
late spring in melting snow [133]. In T. molitor, D.
canadensis and C. fumiferana, the presence of AFPs is
correlated with the developmental stage, but there
does not appear to be a consistent mode of regulation
in these insects or for each isoform within a species. In
T. molitor, weeks of low temperatures and desiccating
conditions increased larval AFP transcript levels, but
developmental timing was crucial [136]. Short photo-
periods were also reported to increase levels of
hemolymph AFPs [84, 136, 137], but others have not

Table 2. Novel CfAFP sequences obtained from an EST database of diapausing C. fumiferana larvae

EST ID Length
(bp)

ORF
(start-
end)

No. of amino acids Note

CFDP_037_C23 580 92–253 107 Identical to CfAFP339

CFDP_037_P04 804 59–385 108 70% identical to CfAFP2.7a

CFDP_0312_A17 765 70–480 136 65% identical to CfAFP10

Table 3. Repeat composition of CfAFPs. Two novel sequences obtained from the EST library are bolded.
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seen evidence of elevated TmAFP mRNAs correlat-
ing with photoperiod length [136]. Despite extensive
sequence searches and gene transfer experiments, no
hormonal regulatory motifs were found adjoining
TmAFP genomic DNA [138]. Generally, D. canaden-
sis AFP expression appears to be regulated by overall
seasonal temperature changes with peak transcript
levels in winter, although some isoforms are present in
warmer months [125].
Evidence of such multifarious regulation is also
apparent in C. fumiferana. Transcripts for the majority
of isoforms were most abundant in the second instar
overwintering stage, but some were also detected in
late summer first instars and even in mid-summer egg
stages [121]. Significantly, these transcripts were
localized to the fore and midguts, and immunological
assays showed AFPs in the gut lumens, but not in the
hemolymph. Since certain freeze susceptible insects
clear their midguts of ingested plant material, it would
not be surprising if these summer isoforms served to
reduce the efficacy of potential ice nucleators in case
of an early frost [139]. As expected, however, at the
overwintering second instar stage, transcripts corre-
sponding to the majority of isoforms were most
abundant and AFP mRNAs were detected by in situ
hybridization in almost all tissues [140]. However,
even at this stage, there was heterogeneity, with the
ubiquitous distribution of one AFP mRNA and a
more limited appearance of another transcript. These
studies underscore the temporal and spatial complex-
ity of AFP gene regulation even in an insect with a
relatively small AFP gene family [140] and make a
strong case for the need for continuing study in this
area.

Freeze tolerance

In freeze-tolerant insects, extracellular fluids freeze in
a controlled manner to maintain the cellular contents
in an unfrozen state. Metabolic pathways for produc-
tion of cryoprotectants such as sugars, polyhydroxy
alcohols, amino acids as well as possibly antifreeze
proteins may be upregulated [30, 39, 87]. For example,
when acclimatized to low temperatures, the freeze
tolerant, cold shock-resistant gall fly Eurosta solid-
aginis larvae dramatically alter their metabolism to
produce glycerol and sorbitol [141]. Although the
absolute levels may be lower than those of freeze-
susceptible (�Doc�) insects, the concentrations dra-
matically rise in the non-frozen fraction as ice forms.
The gall fly is freeze hardy but it appears susceptible to
cumulative chill injury, and thus this class is distin-
guished from insects that are freeze, cold shock and
chill tolerant [4] (Table 1). In practical terms, however,

there is of yet insufficient data on chilling injury in
freeze-tolerant insects, and these two classes are
discussed together.
The freeze-tolerant Arctic insect Gynaephora groen-
landica enhances its freeze-tolerance by producing
glycerol [142] presumably to slow ice formation [143],
but the selection of suitable microhabitats for over-
wintering is also reported to be crucial [144]. Mito-
chondria degrade in G. groenlandica, possibly reduc-
ing damaging free radical generation [145, 146]. Some
freeze-tolerant insects also produce trehalose, which
can reportedly facilitate the formation of a glassy
frozen state, inhibiting solute crystallization [147].
Freeze-tolerant insects freeze at high subzero temper-
atures, raising their supercooling point by producing
ice nucleators or accumulating other macromolecules
[39, 141, 148].
As previously indicated, many insects which produce
AFPs are freeze-avoiding, but AFPs can also be found
in certain species known to be freeze-tolerant at
temperatures as low as -408C to –70 8C [91]. Why do
some insects freeze but produce AFPs? The ability of
these proteins to inhibit ice recrystallization [149] and
thus prevent the formation of large ice crystals at
temperatures close to melting would reduce tissue
damage [150]. This is likely more important than TH
activity to these insects at times of freeze-thaw or at
temperatures close to melting, and is probably partic-
ularly significant for polar insects, since spring on the
tundra is often characterized by multiple freeze-thaw
cycles [151]. Since high temperatures are known to
inactivate bacterial ice nucleating proteins [152, 153,
unpublished], it is of interest that it has been further
argued that the presence of AFPs may be important to
protect insects in the spring, when in the absence of
nucleators it might be advantageous to supercool
[154]. In addition, AFPs may afford some protection
from nucleators themselves (see below).

Ice nucleators

As noted, small volumes of pure water have the
capacity to supercool and do not freeze at temper-
atures close to their melting points. It is only the
presence of ice nucleators that ensures that water
crystallizes near 08C. As a consequence, unless ice
nucleators or ice crystals are present, the small size of
insects dictates that they are unlikely to spontaneously
freeze until their body fluids drop to 258C below that
of the equilibrium freezing point [155]. Although
some have argued that crystallization in insects is due
to homogeneous ice nucleation [156], the weight of
evidence suggests that heterogeneous nucleators are
important in biological systems [155, 157, 158].
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Membranes, unspecified large biological molecules,
salts, proteins, lipoproteins, bacteria and fungi [103,
159, 160] have all been cited as nucleators in insects. E.
solidaginis uses calcium phosphate crystals to reduce
supercooling points, and other crystals such as calcium
carbonate, potassium phosphate, uric acid and several
periodic table group one and two urates have also
been reported in insects [161].
Inoculative freezing by external ice is also possible in
those species that are unprotected, but even then the
cuticle likely offers some resistance to ice crystal
growth. In this regard, it may be significant that
cocoons can offer some protection, but some silks can
also act as ice nucleators [162]. Indeed, several insects,
including some larval dipteran and coleopteran spe-
cies [155], depend on inoculative freezing to prevent
supercooling. Thus, no internal ice nucleators with
higher activity would be present in these freeze-
tolerant insects.
The most active ice nucleators, apart from ice itself,
are ice nucleating bacteria. These were initially
reported as plant epiphytes, those bacteria that
colonize the surface of leaves and stems [163 – 165],
and thus have been historically linked with plant
pathogens such as Pseudomonas syringae. Given
sufficient numbers, these bacteria typically allow ice
to form at temperatures as high as -28C. Therefore, the
proteins that mediate this effect, likely by providing a
repetitive scaffold for ice growth, have been called
type 1 or the most active of the ice nucleator proteins
(INPs). INPs and ice lipoproteins have also been
reported in freeze-tolerant insects, but with weaker
nucleating activities at -6 to -108C [166– 169]. Large
ice crystals are formed in the presence of highly active
type 1 INPs, and thus it is a formal possibility that
insect INPs are less active in order to generate smaller,
potentially less damaging initial ice crystals upon
freezing.
Some ice nucleation activities have been seen in
hemolymph, but other ice nucleators have been
reported in whole insects. The composition of some
of the insect ice nucleators has been reviewed [170,
159], including a 74 kDa protein that was reported in
queens of the hornet, Vespula maculata [171]. How-
ever, the most detailed studies on an insect nucleator
are from the ~800 kDa lipoprotein from the cranefly,
Tipula trivittata [39]. These insects overwinter as
frozen larvae. The lipoprotein showed some cross
reactivity with antibodies raised against bacterial ice
nucleation proteins as well as a synthetic peptide
containing a bacterial INP consensus 8-mer repeat. In
addition, the crane fly protein similarly appeared to
depend on phosphatidylinositol, likely for membrane
anchoring [103, 167]. A 70 kDa INP purified from the
hemolymph of D. canadensis has been partially

characterized, with a reported primary function of
enhancing DcAFP activity [172]. It is not known if the
INP activity of this protein is fortuitous.
Since many overwintering insects feed on plant
material, or come in contact with precipitation or
soils which also contain ice nucleating bacteria [173,
unpublished], care must be taken to ensure that
potential insect INPs do not originate from micro-
organisms. Indeed, one might argue that there would
be little need for certain insect groups to evolve such
endogenous INPs if they feed upon or are associated
with such ice nucleating microorganisms. In fact, ice
nucleating bacteria and fungi, many of which only
have nucleation activity when kept at �seasonal�
temperatures [152], have been described in insect
guts (reviews: [155, 174]).
Whether or not insect ice nucleators contribute to
overwintering survival is a difficult question. It has
been argued that because freeze tolerant insects
survive freezing, there would be little to be gained
by eliminating either physiologically or by selection,
�incidental nucleators�, those molecules that can
accidentally act as nucleators [159]. However, there
would be strong pressure to remove �incidental
nucleators� from the freeze-susceptible classes and
hence the presence of nucleators would be fortuitous-
ly correlated with freeze tolerance. Support for this
thesis comes from studies of high latitude species
which show no significant differences in nucleation
temperatures, irrespective of acclimation tempera-
tures [159, 175]. Analogously, it is possible that the
production of AFPs by some freeze-susceptible in-
sects serves to decrease the activity of �incidental� and
hard to eliminate ice nucleators, since the presence of
antifreeze glycoproteins, and likely also AFPs, re-
duces the activity of INPs [176]. Thus it is a most
interesting observation that DcAFPs have been
reported to bind to �enhancer proteins� with ice
nucleator activity [172]. Yet another possible manner
by which �incidental� or insect-encoded ice nucleators
could increase survival is that the large ice crystals
formed in the presence of nucleators do not appear to
grow even larger when retained at temperatures close
to melting (unpublished observations). This suggests
that ice nucleators may inhibit ice recrystallization,
and thus themselves be useful to reduce freeze-thaw
stress.

Conclusions

It has become clear in the last 30 years that insects
encode a great diversity of proteins to alleviate
cryoinjury, and frequently supplement this protection
with a battery of low molecular weight polyols and
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sugars. On the other hand, cold shock and cold
hardening responses seemingly involve changes in
macromolecules linked to cell membrane fluidity and
metabolic reserves (e.g. glycerophospholipids and
glucose [7, 177]). How these different components
are regulated to protect the insect optimally, either
under short-term exposure or over whole seasons
including diapause states, is a question which will still
see intense investigation for years to come. Micro-
arrays and proteomic technologies will facilitate an
understanding of those cold adaptation mechanisms
which depend on de novo gene expression, as has been
done previously to assess the impact of cold shock in
Drosophila [47]. A recent proteomics study on
diapausing flesh flies [178] has highlighted the im-
portance of several HSPs during this period of cold
hardiness, and is the harbinger of more such work in
this area. However, genome- and proteome-wide
studies should also be initiated on much more cold-
hardy insects of the �Doc� and �Happy� classes, such as
the spruce budworm moth and the arctic beetle, P.
deplanatus, respectively. Apart from AFPs and INPs,
the suite of genes responsible for helping to sustain life
during periods of extreme cold are not known.
The model proposed by Nedved also underscores our
scant knowledge on protective mechanisms against
cumulative cryoinjury, in contrast to short-term pro-
tective responses [4]. Very few studies have been done
to identify the proteins or small molecules involved,
but the role of polyols and sugars for such long-term
protection can be logically suspected [179]. Indeed,
many freeze-intolerant insects accumulate polyols to
levels which would be insufficient to significantly
reduce their supercooling points [21, 180]. Polyol
protection against cumulative cryoinjury might be
linked to their known osmoprotective properties, or
by acting directly and indirectly as chaperones [181,
182]. It remains to be explored whether freeze-
tolerant and freeze-intolerant insects control long-
term cryoinjury in the same manner. Finally, the
evolutionary origin of insect AFPs and the nucleators
found in insects remains a mystery. The widely differ-
ent AFP sequences isolated to date from Lepidoptera
and Coleoptera orders parallels the situation of teleost
fishes from polar seas, which express a striking
diversity of AFPs [183]. The striking but divergent
sequences of CfAFPs and TmAFPs, as well as that of
the snow flea, consisting of repeats of short ice-
binding units, make the identification of a non-AFP
precursor in insect genomes a technical challenge.
Thus, questions remain on the evolutionary origin of
insect AFPs, on the mechanism of action of low
molecular weight cryoprotectants, as well as on the
pleiotropic roles these molecules play in cold hardi-
ness strategies. However, a classification scheme

centered on all three sources of injuries related to
low temperature (cold shock, freezing and cumulative
chill injury) is a useful guide for future investigations,
in that it provides the canvas on which these fascinat-
ing molecular adaptations have evolved.
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