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Abstract 

The biological pretreatment for the enzymatic hydrolysis of lignocellulosic biomasses depends exclusively on the 
effective pretreatment process. Herein, we report a significant enhancement of enzymatic saccharification obtained 
with corn stover using a bacterial strain Bacillus sp. P3. The hemicellulose removal from corn stover by the strain 
Bacillus sp. P3 was evaluated for enhancing subsequent enzymatic hydrolysis. Therefore, our study revealed that 
an alkaline-resistant xylanase as well as other enzymes produced by Bacillus sp. P3 in fermentation broth led to a 
substantially enhanced hemicellulose removal rate from corn stover within pH 9.36–9.68. However, after a 20-day 
pretreatment of corn stover by the strain P3, the glucan content was increased by 51% and the xylan content was 
decreased by 35%. After 72 h of saccharification using 20 U/g of commercial cellulase, the yield of reducing sugar 
released from 20-day pretreated corn stover was increased by 56% in comparison to the untreated corn stover. 
Therefore, the use of the strain P3 could be a promising approach to pretreat corn stover for enhancing the enzymatic 
hydrolysis process of industrial bioenergy productions.
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Introduction
Increasing consumption of fossil fuel has resulted in an 
increase in fuel cost and atmospheric greenhouse gas 
emission, thus the raw materials for fuel production are 
gradually being replaced by renewable bioresources. Lig-
nocellulosic biomasses from agricultural residues are 
a great potential resource for biofuel production due to 
their wide distribution, abundant reserve, low price, and 
renewability (Wan and Li 2010). Therefore, the utiliza-
tion of these lignocellulosic biomasses to produce bio-
fuels has become an interesting research field. However, 
various obstacles associated with the current methods of 
biofuel production using lignocellulosic biomasses still 

need to be overcome. One of the key problems hamper-
ing the bioconversion of agricultural residues is the high 
resistance of lignocellulose to hydrolysis, which is caused 
by the recalcitrant crystalline structure of cellulose fibrils 
surrounded by hemicelluloses and further sealed by 
lignin (Himmel et  al. 2007), thus effective pretreatment 
processes are necessary to enhance the hydrolysis rate 
and separate hemicellulose from cellulose that allow the 
access of hydrolytic enzymes and increase the sugar yield 
(Zhao et al. 2012; Kumar et al. 2009).

Therefore, chemical pretreatment methods include 
steam explosion, acid hydrolysis, alkaline wet oxida-
tion, and ammonia fiber expansion (AFEX) for efficient 
degradation of hemicellulose require expensive instru-
ments and high energy consumption (Wang et al. 2013). 
Furthermore, these chemical pretreatments often result 
in the generation of inhibitors as well as the produc-
tion of acidic or alkaline wastewater, which create an 
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environmental issue. Therefore, an eco-friendly biological 
pretreatment using microorganisms has been considered 
as an alternative to harsh chemicals and thermochemi-
cal pretreatments for lignocellulosic biomass conversion 
due to its low energy requirement (Keller et  al. 2003). 
The microbial pretreatment involving fungi, especially 
white, brown, and soft-rot fungi have been widely used 
to degrade hemicellulose and lignin from lignocellulosic 
biomasses (Keller et  al. 2003). The white-rot fungi have 
been studied as the most effective microbial candidates 
to pretreat lignocellulosic biomasses (Kirk and Cul-
len 1998). The reducing sugars released from pretreated 
lignocellulosic biomasses (wheat straw, rice straw and 
corn stover) increased 50–65% enzymatic saccharifica-
tion compared to that of non-pretreated control samples 
using white-rot fungi (Wang et al. 2013; Bak et al. 2010). 
Although a wide variety of hydrolytic enzymes (cellu-
lases and hemicellulases) from fungal strains have been 
employed in the industry (Kirk and Cullen 1998; Pérez 
et al. 2002), the bacterial strain could be used as a more 
promising candidate to pretreat the lignocellulosic bio-
masses due to their fast growth and cellulolytic enzyme-
producing ability in harsh environmental conditions 
which are advantageous in lignocellulose degradation 
(Lynd et al. 2002). Moreover, compared to fungi, bacteria 
have the following advantages (Sangrila and Maiti 2013): 
(1) bacteria have a higher growth rate to accelerate the 
production of enzymes; (2) bacteria can produce more 
complex glycoside hydrolases which have the potential 
to provide synergistic functions; (3) bacterial strains are 
excellent at resisting environmental stresses.

In pulp, paper, leather and textile industries, cellulase 
enzymes need to perform under harsh conditions includ-
ing high temperature, alkaline and detergents ambiance 
which can cause denaturing of proteins and loss of cat-
alytic activity (Zamost et  al. 1991; Sondhi et  al. 2015). 
Therefore, in harsh conditions, most of the existing 
enzymes perform very poorly. Moreover, lignocellulolytic 
enzymes which are resistant to alkaline pH are important 
and demanding in today’s Kraft-pulp industry. Thus, the 
isolation of alkali-tolerant lignocellulolytic enzymes pro-
ducing microbes is necessary and essentially useful to 
produce lignocellulolytic enzymes. The optimal pH val-
ues of the fungal culture for maximum cellulase produc-
tion are in slightly acidic ranges from 4.8 to 6.0 (Chang 
and Steinkraus 1982). However, the optimal pH values of 
the most cellulolytic enzyme-producing bacteria are in a 
range from 8.0 to 9.5 (Liu et al. 2017), thus alkali-tolerant 
bacterial candidates are needed for enzymatic hydrolysis 
of cellulose. Moreover, at an unsuitable pH condition, the 
biodegradation efficiency of lignocellulosic biomass will 
be decreased due to low enzyme activities of the microor-
ganism (Maki et al. 2009). This problem severely hinders 

the direct application of cellulolytic enzymes producing 
bacteria to pretreat the lignocellulosic biomasses for bio-
fuels production. Consequently, to improve the biomass 
degradation efficiency, it is necessary to find some alkali-
tolerant cellulolytic enzymes from bacterial candidates.

Therefore, our study was focused on an alkali-tolerant 
cellulolytic enzyme-producing Bacillus sp. P3 strain to 
explore the feasibility of pretreatment for the degrada-
tion ability and enzymatic productivity using various lig-
nocellulosic materials. The lignocellulosic material that 
induced maximum enzyme production was selected as 
the carbon source to optimize the enzyme production 
conditions. Under optimal conditions, the strain P3 was 
directly cultured with the selected lignocellulosic mate-
rial to weaken its structure mainly by decomposing hemi-
cellulose. The effect of pretreatment was then assessed 
by reducing sugar yields from the pretreated materials in 
enzymatic saccharification with commercial cellulase.

Materials and methods
Corn stover and bacterial strain P3
Corn stover was provided by Agriculture and Agri-Food 
Canada. The air-dried corn stover was chopped and 
milled to pass through a 50-mesh sieve for this study. The 
milled sample was stored at ambient temperature in an 
airtight container until use.

The Bacillus sp. strain P3 (Accession No. MF462257) 
and its enzymatic characteristics have been described 
previously (Guo et al. 2017a). The strain P3 was stored at 
−  70  °C. Moreover, one set of this strain P3 was main-
tained at 4  °C on Luria-Bertani (LB) agar (10  g/L pep-
tone, 5  g/L yeast extract, 10  g/L NaCl and agar 15  g/L) 
slant and sub-cultured every 2  weeks. Seed culture for 
batch fermentation experiments was prepared from the 
stock slant culture by inoculating into LB broth (10 g/L 
peptone, 5 g/L yeast extract, 10 g/L NaCl) medium, incu-
bated at 37 °C and 200 rpm for 12 h.

Evaluations of biomass degradation abilities
To assess the biomass degradation ability of the strain P3, 
different lignocellulosic biomasses including agave, algae, 
corn stover, Miscanthus, wheat bran, wood dust and pine 
chip were used as the carbon sources according to the 
method described by Guo et al. (2017b). Briefly, a 5.0 μL 
of the overnight-grown LB broth culture was dropped 
or inoculated on the plate containing modified minimal 
salt (MMS) medium (0.1%  NaNO3, 0.1%  K2HPO4, 0.1% 
KCl, 0.05%  MgSO4, 0.05% yeast and 0.3% peptone) sup-
plemented with 1.5% agar and 0.5% biomass or CMC 
or xylan, incubated at 37  °C for 48 h. The biomass deg-
radation ability was evaluated based on the size of bio-
mass hydrolyzing zone (zone of clearance or halo zone) 
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produced on the plate by the bacterial strain after stain-
ing with Gram’s iodine solution.

Optimization of fermentation parameters for cellulolytic 
enzyme production
To optimize the fermentation conditions for maximum 
enzyme production, the strain P3 was inoculated (2%, 
v/v) in the MMS broth medium supplemented with 0.5% 
(w/v) biomass or CMC, incubated at 37 °C for 12, 24, 36, 
48, 60 and 72 h, respectively, in a rotary shaker incuba-
tor of 200  rpm. To evaluate the influence of different 
carbon sources on enzyme production, the agave, algae, 
corn stover, Miscanthus, wheat bran, wood dust, pine 
chip and CMC were used as the substrates according to 
the method described previously (Guo et al. 2017b). Fol-
lowing incubation, the broth culture was centrifuged at 
12,000g for 3 min to obtain the supernatant, which was 
used as the crude enzymes for CMCase and xylanase 
activities analysis. The activities of CMCase and xyla-
nase were determined by measuring the released reduc-
ing sugar from substrate. The reducing sugar content was 
measured by DNS method (Miller 1959). The substrate 
corn stover (carbon source) was selected to optimize the 
biomass concentrations for lignocellulosic enzymes pro-
duction due to its high CMCase and xylanase production 
ability compared with other biomasses tested herein. For 
optimization of corn stover concentrations, the MMS 
broth medium was supplemented with 0.5%, 1.0%, 2.0% 
and 4.0% corn stover, respectively.

The influences of temperature on CMCase and xyla-
nase productions were investigated by culturing the 
strain P3 at 30, 37, 45 and 50 °C for 24 h, while the effects 
of different initial pH values of the culture medium on 
enzyme productions were determined in a wide range of 
pH from 5.0 to 10.0 at an interval of 0.5. The pH values of 
medium were adjusted with the addition of hydrochloric 
acid (HCl) and sodium hydroxide (NaOH).

Effects of temperature and pH on enzyme activities
The crude enzymes harvested under optimal fermenta-
tion conditions were taken for evaluating the effects of 
temperature and pH on CMCase and xylanase activi-
ties. However, for determining the effects of incubation 
temperature and pH of the reaction mixtures with crude 
enzyme, a wide range of temperatures from 40 to 80  °C 
and pH from 4.0 to 9.5 were set the incubation periods. 
The 0.05  M citrate and Tris–HCl buffer solutions were 
used, respectively, to set the pH of the enzyme reaction 
mixtures.

Bacterial pretreatment of corn stover
For bacterial pretreatment, dried corn stover (0.5%, 
w/v) was mixed with MMS broth medium, autoclaved 

at 121  °C for 30  min. An overnight LB broth culture of 
the strain P3 was inoculated (2%, v/v) in an Erlenmeyer 
flask containing 50  mL of medium and a control flask 
of 50  mL medium without bacterial inoculum was also 
subjected to the same conditions. Bacterial pretreatment 
was performed at 37 °C with 200 rpm for 20 days, and all 
flasks were covered by parafilm to prevent water evapo-
ration in this process (Papavizas et al. 1984). The samples 
were taken at 5- to 10-day intervals, filtered through a 
double-layered muslin cloth (300 mesh) and the super-
natant was collected for the determination of reducing 
sugar as well as enzymes (CMCase and xylanase) activi-
ties. The residue was washed several times with distilled 
water through a double-layered muslin cloth (300 mesh) 
to remove the bacterial cells, dried at 50 °C until constant 
weight and used to determine the weight loss and cell 
wall compositions. The pH, enzyme activities and reduc-
ing sugar content of supernatant were determined after 
centrifugation at 1200g for 3 min.

Biomass composition analysis
According to the methods described by Shrestha et  al. 
(2015), the analysis of cellulose and hemicellulose con-
tents was carried out by measuring the contents of 
glucan and xylan. Anthrone–sulfuric acid and orcinol–
hydrochloric acid methods (Leyva et  al. 2008; Tomoda 
1963) were used to determine the content of hexose and 
pentose, respectively. The Klason lignin analysis was con-
ducted using the method written by Ibáñez and Bauer 
(2014).

Enzymatic saccharification of pretreated corn stover
To detect the saccharification effect of the corn stover 
pretreated by the strain P3, commercial cellulase 
extracted from Trichoderma reesei ATCC 26921 (Cellu-
clast 1.5 L, Novozymes, Franklinton, NC, USA) was used. 
The corn stover samples pretreated for 5, 10 and 20 days 
were saccharified by loading 20  FPU/g of commercial 
cellulase, the amount of which was set at the maximum 
to sufficiently hydrolyze the substrate according to the 
previous study (Singh et  al. 2009). Enzymatic sacchari-
fication was conducted in 0.05 M citrate buffer (pH 4.8) 
containing 1% (w/v) pretreated corn stover and 0.005% 
sodium azide (Ferraz et  al. 2017). The reaction mixture 
was incubated at 50 °C with an agitation of 200 rpm for 
72  h. The non-pretreated corn stover was used as the 
control group. The reducing sugar was determined using 
method DNS method (Miller 1959).

Statistical analysis
All data in our experiments were obtained from the mean 
of three replicates. To quantify the significant difference 
between different treatments, statistical analysis was 
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carried out by one-way analysis of variance. Pearson cor-
relation analysis was conducted to explain the main fac-
tor resulting in the release of reducing sugar in enzymatic 
saccharification. Statistical analysis was performed using 
SPSS (SPSS Inc., USA, version 13.0).

Results and discussion
Biomass degradation ability of Bacillus sp. P3
Bacillus sp. P3 has the capability of producing cellulo-
lytic enzymes by utilizing various lignocellulosic mate-
rials. The biomass hydrolysis ability of the strain P3 was 
evaluated on the cellulosic biomass or CMC or xylan-
containing MMS agar culture plate by staining with 
Gram’s iodine solution (Fig.  1). Gram’s iodine produces 
bluish-black products with cellulose but not with its 
hydrolysates, therefore, a clear zone produced around 
the bacterial growth after addition of iodine solution 
indicates that the organism has hydrolyzed cellulose 
(Guo et  al. 2017b). The strain P3 produced the clear or 
halo zones, ranging from 3.09 to 4.02  cm on the plates 
by hydrolyzing the biomasses, and the maximum hydrol-
ysis (4.02  cm halo zone) of biomass was detected using 
corn stover as a carbon source (Fig.  1). Moreover, in 
our experiment, the clear halo regions on the CMC and 
xylan-containing plates indicated the hydrolysis of bio-
masses by CMCase and xylanase enzymes, respectively, 
produced from the stain P3, and the results are sup-
ported by the result reported previously (Lin et al. 2017). 
Several studies have been done by other researchers on 
the capability of producing various extracellular lignocel-
lulolytic enzymes by Bacillus sp. (Wilson 2009; Arantes 

and Saddler 2010), and the enzymes exhibited outstand-
ing hydrolytic ability to various lignocellulosic feedstocks 
(Alvira et al. 2010).

Optimization of culture conditions for cellulolytic enzymes 
production
Substrates and its concentrations for maximum cellulolytic 
enzymes production
Therefore, for selecting the best substrate (carbon source) 
to induce the production of cellulolytic enzymes, eight 
typical lignocellulosic biomasses viz., agave, algae, corn 
stover, Miscanthus, wheat bran, wood dust, pine chip and 
CMC were used for cellulolytic enzyme production by 
the strain Bacillus sp. P3. The maximum CMCase activity 
with the value of 17.81 U/g was obtained using 0.5% (w/v) 
corn stover after 36  h of cultivation, while the CMCase 
activities ranged from 4.23 to 14.57  U/g were obtained 
using other carbon sources (Fig.  2A). In addition, the 
maximum xylanase activities were 214.41, 213.59 and 
195.85  U/g using wheat bran, algae and corn stover as 
the carbon sources after 24 h, 36 h and 48 h of fermen-
tation, respectively (Fig. 2B). The CMCase and xylanase 
produced from Bacillus sp. strains can be highly induced 
by the various lignocellulosic biomasses, the main com-
ponents of which are cellulose, hemicellulose and lignin 
(Maki et  al. 2009; Sadhu et  al. 2013). The maximum 
CMCase activity of the strain P3 was induced by corn 
stover, which is similar with the results obtained using 
Bacillus subtilis (Akhtar et  al. 2001). Moreover, in this 
study, the highest xylanase activity (195.85 U/g) exhibited 
by the strain P3 using corn stover as a carbon source was 

Fig. 1 The halo diameters (cm) were produced by of Bacillus sp. P3 using on MMS agar medium supplemented with 0.5% different biomasses. The 
hydrolysis abilities exhibited by the strain P3 were compared by matrix plot
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significantly higher than that of Bacillus licheniformis 
A99 (16.30  U/g) induced by wheat bran under optimal 
fermentation conditions (Archana and Satyanarayana 
1997). Therefore, the untreated corn stover was selected 
as a potential lignocellulosic biomass to perform pre-
treatment experiments due to its easy degradation and 
high cellulolytic enzymes production by P3.

The effects of different concentrations of untreated 
corn stover on cellulolytic enzymes production were 
investigated by adding 0.5%, 1.0%, 2.0% or 4.0% (w/v) of 
corn stover in the MMS broth medium. The maximum 
CMCase (12.86 U/g) and xylanase (214.41 U/g) produced 
by the strain P3 using 0.5% corn stover were remarkably 
higher than the results achieved with other three concen-
trations after 36 h and 24 h of fermentation, respectively 
(Fig. 3). The same substrate concentration (0.5%, w/v) to 
produce cellulolytic enzymes by Bacillus sp. strains has 
been reported earlier (Guo et  al. 2017b). Moreover, the 
activities of CMCase and xylanase were significantly 
decreased with increasing substrate concentrations. 

Specifically, the CMCase and xylanase activities obtained 
with 0.5% corn stover were increased dramatically 
(Fig.  3). The excessive biomass content effects on oxy-
gen transfer in the fermentation broth, which inhib-
ited the cell growth and enzymatic secretion of bacteria 
(Guo et  al. 2017a). In addition, the high concentrations 
of several hydrolysates (mannose, xylose, and galactose) 
produced in the process of cellulosic hydrolysis may also 
be the reason for restraining the activities of cellulolytic 
enzymes (Xiao et al. 2004).

Optimization of incubation temperature and medium initial 
pH for maximum enzyme production
To optimize the medium initial pH and fermentation 
temperature for maximum production of cellulolytic 
enzymes, the strain P3 was cultured in the MMS broth 
medium supplemented with 0.5% corn stover for 24  h 
(Additional file 1: Fig. S1). The optimal temperature of the 
strain P3 for producing maximum CMCase and xylanase 
was 37  °C, and the enzyme production was decreased 
drastically after reached the peak (Additional file 1: Fig. 
S1A). These results were consistent with an earlier study 

Fig. 2 CMCase (A) and xylanase (B) activities of the Bacillus sp. P3 
strain cultivated in MMS broth medium at 0.5% (w/v) of different 
biomasses and CMC. Incubation temperature was 37 °C. Bars indicate 
the standard deviation (n = 3)

Fig. 3 CMCase (A) and xylanase (B) activities of Bacillus sp. P3 in MMS 
broth medium supplemented with different concentrations of corn 
stover as a substrate. Incubation temperature was 37 °C. Bars indicate 
the standard deviation (n = 3)
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indicating the optimal temperature of bacterial growth 
and metabolism was around 37  °C (Huser et  al. 1982). 
Nevertheless, the strain P3 showed the maximum pro-
ductions of enzymes at an initial pH 7.0; however, more 
than 60% relative enzyme activities were observed when 
the medium initial pH ranged from 7.5 to 10.0 (Addi-
tional file 1: Fig. S1B). Moreover, the strain P3 exhibited 
more than 90% relative xylanase activity at the initial pH 
ranging from 9.0 to 10.0, where the highest relative activ-
ity of xylanase was obtained at pH 10.0 (Additional file 1: 
Fig. S1B). Therefore, our results obtained from Bacillus 
sp. P3 strain were supported by other Bacillus sp. strains, 
which grew and produce xylanases in a wide range of pH 
(6.0–10.0) (Bansod et al. 1993; Annamalai et al. 2014).

Optimization of temperature and pH for maximum enzyme 
activities
Effects of temperature on the activities of CMCase and 
xylanase obtained from the strain P3 were assessed at 
different temperatures ranging between 40 and 80  °C 
(Fig.  4A). The optimal temperatures for maximum 
CMCase and xylanase activity were found at 70 and 
60  °C, respectively, and both enzymes exhibited more 
than 60% relative activity with slightly declined after 
reached the peak value (Fig. 4A). These results presented 
in Fig. 4A were higher than the optimal temperatures of 
several thermotolerant cellulolytic enzymes produced by 
the typical Bacillus strains (Kim et  al. 2009; Annamalai 
et al. 2011). Nevertheless, the effects of pH on CMCase 
and xylanase activities were evaluated using different pH 
in enzyme reaction mixtures (Fig.  4B). The optimal pH 
for maximum CMCase activity was recorded as 8.5, and 
more than 75% relative activity was attained between pH 
6.0 and 9.5. Therefore, in case of xylanase, the maximum 
activity was obtained at a pH 6.0, and more than 70% rel-
ative activities were accomplished in alkaline pH condi-
tions (Fig. 4B). The optimal pH values of two cellulolytic 
enzymes produced by the strain P3 were significantly 
higher than that of cellulases and xylanases produced by 
other Bacillus sp. strains (Kim et al. 2009; Lee et al. 2008), 
indicating that cellulolytic enzymes produced by strain 
P3 were alkalotolerant.

According to an earlier study, lignocellulose decon-
structing enzymes (cellulases and hemicellulases) could 
be used to pretreat lignocellulosic biomass for biofuel 
production, and the production methods are normally 
conducted at high temperature (≥ 50  °C) with alkaline 
conditions to increase the reaction velocities of enzy-
matic hydrolysis and yields of reducing sugar (Bhalla 
et  al. 2013). Therefore, the application of thermotoler-
ant and alkalotolerant cellulolytic enzymes to high tem-
perature and alkaline environments was put forward 
as an efficient approach to overcome these limitations 

(Yeoman et  al. 2010). It is widely accepted that bacteria 
are one of the most efficient producers of thermoalkalo-
tolerant cellulases and xylanases (Saratale and Oh 2011). 
Several scholars have been tried to isolate potential bac-
terial candidates for the production of these thermotol-
erant and alkaliphilic cellulolytic enzymes due to their 
enormous industrial potential (Maki et al. 2009). Mean-
while, overmuch cellulase would contribute to the loss of 
cellulose for subsequent saccharification, therefore the 
strong hydrolytic ability mainly caused by high xylanase 
activity of a bacterial strain is applicable in biopretreat-
ment for selective removal of hemicellulose from ligno-
cellulosic biomass (Kohli et  al. 2001). In this study, the 
strain Bacillus sp. P3 had the capability of withstanding 
extreme conditions of thermal and high pH and exhibited 
16.67-fold higher activity of xylanase compared to that 
of CMCase in the optimal cultivation condition (Fig. 3). 
Hence, the strain P3 and its cellulolytic enzymes could 
be used as the potential candidates for harsh production 
applications.

Fig. 4 Effects of different temperatures (A) and pH (B) on enzymatic 
activities (%) determined by incubating the crude enzymes with CMC 
or xylan for 30 min. Bars indicate the standard deviation (n = 3)
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Characterization of fermented supernatants and corn 
stover before and after pretreatments
The pH values, cellulolytic enzyme activities and reducing 
sugar yields
The pH value of the fermentation broth notably increased 
from neutral (initial pH 7.0) to high alkaline (9.41) after a 
5-day cultivation of the strain P3 and the high pH con-
dition (9.36–9.68) was observed until end of this experi-
ment (Table 1). Most of the Bacillus sp. strains have been 
proven the capability of changing surrounding habitats to 
be alkaline during the fermentation process due to secre-
tion of secondary metabolites (Schallmey et  al. 2004), 
which could be the main reason to explain the pH varia-
tion in this study.

Under the alkaline condition created by the strain P3, 
the high activity of xylanase was detected during the 
process of pretreatment with the maximum values of 
199.63  U/g after 10  days of incubation (Table  1). After 
20 days of pretreatment, xylanase activity declined with 
the value of 148.90  U/g. For CMCase activity, a similar 
trend was observed (Table  1). The highest level of xyla-
nase activity observed here was higher than the activi-
ties of enzymes from other biomass-degrading Bacillus 
sp. strains under optimal conditions (Archana and 
Satyanarayana 1997), thus the strain P3 has an abil-
ity for producing higher level of xylanase under alka-
line milieu. Moreover, after pretreatment, the reducing 
sugar released in the culture broth was increased from 
16.22 mg/g (0 day) to 55.50 mg/g (20 days) (Table 1). It 
was obvious that the cellulolytic enzymes produced in 
alkaline environment (pH 9.36–9.68) by the strain P3 
had a significant effect on the release of xylose or glucose 
from corn stover.

The weight losses and compositional variations of corn stover
The weight losses of corn stover decayed by the strain 
P3 ranged from 30.43 to 33.91% with the increase of 
pretreatment time (5 to 20 days). Compared to the corn 
stover pretreated for 5 days, the weight loss increased by 
only 3.5% after 20 days of pretreatment, which indicated 

that there was slight consumption of raw materials with 
the extension of processing time. Moreover, the final 
weight loss caused by bacterial pretreatment in this study 
was much lower than the weight losses (38.60–52.80%) 
caused by efficient biomass-degrading fungi (Saha et  al. 
2016). Certain microorganisms, which were used to pre-
treat biomass, could simultaneously degrade lignin and 
polysaccharides, resulting in unnecessary loss of mate-
rial. However, the strain P3 is significantly efficient for 
the pretreatment of corn stover and able to selectively 
degrade lignin. Thus, the result reported in this study 
demonstrated that the strain P3 has a great potential to 
pretreat the corn stover with less material loss.

Therefore, the effects of biopretreatment using the 
strain P3 on glucan, xylan and lignin contents of the pre-
treated corn stover were markedly different from non-
pretreated corn stover (Table 1). The non-pretreated corn 
stover contained 26.82% glucan, 25.98% xylan and 21.90% 
acid-insoluble lignin (Table  1), which were similar with 
the results obtained from previous research (Liu et  al. 
2013). After a 5-day pretreatment by the strain P3, the 
corn stover had a xylan content of 21.74% showing a sig-
nificant decline and the content of glucan was increased 
to 31.54% (Table  1), indicating the xylan (hemicellu-
lose) was first decomposed by the high-content xylanase 
(135.60 U/g) produced by the strain P3, thus the cellulose 
would then be exposed to CMCase for further utilization 
(Polizeli et  al. 2005). After 20  days of biopretreatment, 
the glucan content was significantly increased to 40.58%, 
whereas the concentration of xylan was decreased mark-
edly to 16.90% with slight lignin removal. The ability to 
produce a large amount of xylanases from xylan present 
in hemicellulose has been previously observed in several 
Bacillus sp. strains (Sá-Pereira et al. 2002; Subramaniyan 
and Prema 2000). Therefore, in this study, the exposure of 
glucan and decomposition of xylan demonstrated a sat-
isfactory effect on the biopretreatment of lignocellulosic 
biomass (corn stover) for the removal of xylan by the 
strain P3. Also, the strain P3 exhibited the better xylan 
removal efficacy from lignocellulosic biomass compared 

Table 1 The pH values, enzyme activities and reducing sugar yields of the supernatants, as well as the weight losses and 
compositions of corn stover pretreated with strain P3 for different times (n = 3)

Time (days) pH Enzymes (U/g) Reducing sugar 
(mg/g)

Biomass wt. loss 
(%)

Component (%)

CMCase Xylanase Glucan Xylan Acid-insoluble 
lignin

0 7.00 0.00 0.00 16.22 ± 1.23 0.00 26.82 ± 1.57 25.98 ± 2.68 21.90 ± 0.20

5 9.41 ± 0.03 13.12 ± 0.82 135.60 ± 2.29 50.23 ± 2.09 30.43 ± 0.33 31.54 ± 1.90 21.74 ± 0.62 22.80 ± 0.40

10 9.68 ± 0.07 14.50 ± 0.55 199.63 ± 7.57 41.17 ± 2.02 32.53 ± 0.38 36.02 ± 0.80 18.51 ± 1.71 21.90 ± 0.42

20 9.36 ± 0.11 12.04 ± 0.76 148.90 ± 5.01 55.50 ± 0.74 33.91 ± 0.21 40.58 ± 2.09 16.90 ± 0.11 18.40 ± 0.28
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to that of xylanase-producing fungi and physicochemical 
methods (Kuhar et al. 2008; Ravindran et al. 2017).

Effects of biological pretreatment on enzymatic 
saccharification of corn stover
For efficient hydrolysis of corn stover, commercial cel-
lulase 20  U/g, was used to conduct the enzymatic sac-
charification. Therefore, 20 U/g cellulase was selected for 
maximum hydrolyzing of substrate based on the result 
reported previously (Singh et  al. 2009). The bacterial 

pretreated and non-pretreated corn stover exhibited sig-
nificant degradability using 20 U/g commercial cellulase 
(Fig.  5). After 72  h of incubation, the 5, 10 and 20-day 
pretreated corn stover samples were hydrolyzed by com-
mercial cellulase, yielding 140.51, 144.06 and 203.97 mg/g 
reducing sugar, respectively, while the corresponding 
yield of reducing sugar released from non-pretreated 
corn stover was 130.87  mg/g (Fig.  5). Therefore, in this 
study, it was clear that the efficiencies of saccharifica-
tion were significantly increased by 56% after 20 days of 
pretreatment, which is the highest increase rate of reduc-
ing sugar yield. Also, our result was superior to the pre-
vious results showed an increase of 32% reducing sugar 
yield after 60  days of incubation using fungal strains to 
pretreat lignocellulosic biomass (Taniguchi et  al. 2005), 
thus the strain P3 is a highly efficient bacterial candidate 
to improve saccharification efficiency of lignocellulosic 
material. Moreover, according to the results of Pear-
son correlation analysis (Additional file  1: Fig. S2), the 
final yields of reducing sugar from pretreated and non-
pretreated corn stover had a significant positive correla-
tion with the content of glucan in corn stover (P < 0.05). 
Therefore, it can be inferred that the enzymatic hydrol-
ysis was enhanced greatly after 20  days of pretreatment 
due to the efficient removal of the hemicellulosic fraction 
for exposing cellulose polymers to provide more acces-
sible surface areas for commercial cellulase (Wan and Li 
2010).

Fig. 5 Saccharification of 0, 5, 10 and 20-day pretreated corn stover 
using commercial cellulases. Bars indicate the standard deviation 
(n = 3)

Fig. 6 Flowchart summarizing the effects of Bacillus sp. P3 on cellulolytic enzymes production, xylan decomposition, lignin removal and enzymatic 
saccharification of corn stover
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Overall mass balance
To generalize the complete process for carbohydrate deg-
radation of corn stover pretreated by Bacillus sp. P3, a 
mass balance diagram is shown in Fig. 6. After a 20-day 
pretreatment, the glucan content of corn stover was 
increased by 51% compared to that of non-pretreated 
corn stover, while the xylan content was decreased 
by 35%. As shown in Fig.  6, the lignin content was also 
decreased, indicating that the strain P3 is able to degrade 
lignin. Moreover, the solid recovery was 66%, which has 
met the standard of industrial production (Uppugundla 
et al. 2014). Our results indicated that the pretreated corn 
stover containing more accessible glucan could be appli-
cable to the process of fermentation for biofuel produc-
tion (Guo et al. 2017a). Furthermore, the total amount of 
reducing sugar released in the process of pretreatment 
and enzymatic saccharification was 20.58  g from per 
100  g of pretreated corn stover, which was 57% higher 
than those of non-pretreated one. Although this study 
did not present the integrated technoeconomic evalua-
tions in a process context for the bacterial pretreatment 
using the strain P3, it provided useful insights to amelio-
rate the pretreatments in an easier and greener way.

Conclusions
This study demonstrated an effective strategy to enhance 
the efficiency of enzymatic hydrolysis using Bacillus sp. 
P3 strain to pretreat the corn stover. After a 20-day pre-
treatment of corn stover by the strain P3, the reducing 
sugar yield from the pretreated corn stover after enzy-
matic saccharification was increased by 56% compared 
to that from non-pretreated corn stover. Moreover, as a 
thermoalkalotolerant cellulolytic enzyme-producing bac-
terium, the strain P3 and its enzymes can not only be uti-
lized to pretreat biomass alone, but can also potentially 
be combined with other harsher methods to improve the 
cost-efficiency and eco-friendliness of industrial bioen-
ergy productions.

Supplementary Information
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org/ 10. 1186/ s40643- 021- 00445-8.

Additional file 1: Fig. S1. Cellulolytic enzyme activities of Bacillus sp. 
P3 cultivated with 0.5% (w/v) corn stover as substrate under different 
temperature (A) and pH (B) conditions for 36 h. Bars indicate the standard 
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